

EXTREMÁLNÍ ÚLOHY ŘEŠENÉ V PROGRAMU GEOGEBRA

EVROPSKÁ UNIE / UNIA EUROPEJSKA EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ

FUROPEISKI EUNDUSZ ROZWOJU REGIONALNEGO

Zuzana MORÁVKOVÁ, Petr VOLNÝ VŠB – Technická univerzita Ostrava

1 ÚVOD

Pro budoucí bakaláře a inženýry je nezbytná nejenom teoretická znalost matematiky, ale je nutné, aby byli schopni aplikovat matematiku na reálné úlohy z praxe. Proto jsme kurzy matematiky na naší univerzitě obohatili o aplikované úlohy. Za tímto účelem jsme využili volně šiřitelný software GeoGebra, který díky své hratelnosti a interaktivitě motivuje studenty pro studium matematiky. Studenti se učí formulovat problém, převést problém do matematického jazyka, modelovat různé situace v souvislosti se zadanými vstupními informacemi.

Příspěvek byl připraven s pomocí následujících citací, [1–5].

2 EXTREMÁLNÍ ÚLOHY

S extremálními úlohami se setkáváme již od časů antiky a starověkého Řecka. Byly to především geometrické úlohy. Typickým příkladem je tzv. izoperimetrický problém: hledání uzavřené křivky známé délky ohraničující oblast s maximálním obsahem. Řešením problému je samozřejmě kružnice. Později se extremální úlohy začaly objevovat v mnoha různých matematických disciplínách v souvislosti s rozvojem matematické analýzy a především diferenciálního počtu.

S extremálními úlohami se setkáváme nejenom v matematice. Ve skutečnosti veškerá lidská činnost intuitivně směřuje k hledání řešení jistých extremálních problémů. Pokoušíme se dostat někam v co nejkratším čase, snažíme se minimalizovat vzdálenost, po které cestujeme, snažíme se nakoupit co nejvíce za co nejméně peněz, atd.

Extremální úlohy v matematice představují pěkný příklad reálné aplikovatelnosti diferenciálního kalkulu. GeoGebra nám umožňuje získat geometrickou představu o studovaném problému. Umožňuje sestavit dynamický model a odhadnout řešení. Takový odhad pak můžeme porovnat s řešením nalezeným pomocí matematické formulace úlohy, tj. většinou se jedná o nalezení extrému nějaké funkce.

3 ÚLOHA: MINIMÁLNÍ DOPRAVNÍ NÁKLADY

Úloha: Uvažujme továrnu ležící nedaleko cesty vedoucí do města. Minimální vzdálenost mezi továrnou a cestou je a km, přičemž přímá vzdálenost továrny od města je b km.

Je nutné postavit novou cestu, která spojí továrnou se starou cestou (v bodě X), viz

následující obrázek. Náklady na dopravu po nové cestě jsou $25 \in$ a $15 \in$ po staré cestě na km. Kde se nachází bod X spojující starou a novou cestu, aby náklady na dopravu zboží z továrny do města byly minimální?

3.1 Vizualizace úlohy

Na následujícím obrázku se nachází geometrická formulace úlohy.

Obr. 1 Extremální úloha – náklady na dopravu

Zdroj: vlastní práce

Označme délku nové cesty $s_{\rm \scriptscriptstyle NC}$ a staré cesty $s_{\rm \scriptscriptstyle SC}.$ Platí:

$$s_{\rm NC} = \sqrt{a^2 + x^2}, \quad s_{\rm SC} = \sqrt{b^2 - a^2} - x.$$
 (1)

Náklady na dopravu jsou:

$$f = 25s_{\rm NC} + 15s_{\rm SC} = 25\sqrt{a^2 + x^2} + 15\left(\sqrt{b^2 - a^2} - x\right).$$
 (2)

V následující podkapitole ukazujeme, jak sestavit dynamický geometrický model v GeoGebře, a umožňujeme čtenáři odhadnout řešení pomocí tohoto modelu. V podkapitole 3.3 studujeme funkci (2) a nalezneme exaktní řešení úlohy pomocí vnitřního příkazu GeoGebra Extrem.

Analytické řešení problému se nachází v podkapitole 3.4 ve formě typické pro standardní matematickou přednášku bez použití výpočetní techniky.

3.2 Interaktivní pomůcka v GeoGebře

Nejdříve úlohu zformulujeme geometricky, parametry $a \ge b$ jsou reprezentovány posuvníky (viz Fig. 2).

1.	a=2	Vložit $Posuvník$ a od 0 do 10 s krokem 0.1, změnit barvu na zelenou.
		Nastavit hodnotu 4.
2.	a=2	Vložit <i>Posuvník</i> b od 0 do 10, s krokem 0.1, změnit barvu na modrou.
		Nastavit hodnotu na 10.
3.	Input:	Vytvořit bod A vložením A=(0,a) do pole Vstup.
4.	\bigcirc	Vytvořit objekt Kružnice c se středem v A a poloměrem b.
5.	\times	Průsečík mezi kružnicí c a osou OsaX. Získáme dva průsečíky. Správný
		průsečík je ten pravý, B.
6.	Input:	Vytvořit bod O vložením O=(0,0) do pole <i>Vstup</i> .
7.	× ×	Vytvořit objekt <i>Přímka</i> procházející body O a B a přejmenovat ji na cesta.
	~	Vytvořit objekt Úsečka AO mezi body A a O, zobrazit hodnotu (délku) této
8.		úsečky, změnit barvu na zelenou. Je délka této úsečky stejná jako hodnota
		posuvníku a?
9.	~	Vytvořit objekt $\acute{U}se\acute{c}ka$ AB mezi A a B, zobrazit délku úsečky, změnit barvu
		na modrou. Je délka stejná jako hodnota posuvníku b?
10.	~	Vytvořit objekt Úsečka OB mezi O a $B,$ zobrazit délku úsečky.
11.	Z	Měnit hodnoty posuvníků a ověřovat hodnoty délek úseček a posuvníků
		stejné barvy.

Poloha bodu X je dána vzdáleností mezi X a počátkem soustavy souřadnic, a je reprezentovaná posuvníkem x_G , (viz Fig. 2).

12.	a=2	Vytvořit objekt <i>Posuvník</i> x_G od 0 do sqrt(b^2-a^2), změnit barvu na	
		červenou. Nastavit hodnotu na 5.	
13.	Input:	Vytvořit bod X vložením X=(x_G,0) do pole <i>Vstup</i> , červená barva.	
14.	~	Vytvořit objekt Úsečka \mathtt{AX} mezi \mathtt{A} a $\mathtt{X},$ zobrazit délku úsečky.	
15.	~	Vytvořit objekt Úsečka $\tt XB$ mezi $\tt X$ a $\tt B,$ zobrazit délku úsečky.	
16.	~	Vytvořit objekt Úsečka $\tt OX$ mezi $\tt O$ a $\tt X,$ zobrazit délku usečky, barvu na	
		červenou.	
17.	Input:	Vložit $\texttt{f_G=25*AX+15*XB}$ do pole $V\!stup.$ Přetáhnout myší $\texttt{f_G}$ z Algebraic-	
		kého okna do Nákresny.	
18.	\mathbb{R}	Pokusit se změnou hodnot posuvníku s nalézt minimální hodnotu f_G.	
1		-	

Abychom minimalizovali náklady na dopravu, musíme minimalizovat funkci f_G , což závisí na hodnotě posuvníku x_G . Následující obrázek je připraven v černobílé verzi.

EVROPSKÁ UNIE / UNIA EUROPEJSKA EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO

Projekt jest współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego oraz z budżetu państwa RP "Przekraczamy Granice"

Obr. 2 Extremální úloha – geometrický model

Zdroj: vlastní práce

3.3 "Funkce" – matematický model

Dalším krokem je konstrukce symbolické reprezentace úlohy. Místo konkrétní hodnoty posuvníku x_G (respektive f_G) zavádíme proměnnou x (respektive funkci f(x)), viz Fig. 3.

19.	Zobrazit	Zobrazíme pole Nákresna 2 pro umístění následujících objektů.
20.	Input	Vložit do pole <i>Vstup</i> příkaz.
		f(x)=Function[25*sqrt(a ² +x ²)+15*(sqrt(b ² -a ²)-x),0,d]
21.	Input:	Vložit MinValue=Extrem[f,0,d] do pole Vstup, změnit barvu na oran-
		žovou.
22.	Input:	Vložit F=(x_G,f(x_G)) do pole <i>Vstup</i> , změnit barvu na červenou.

Obr. 3 Extremální úloha – minimalizovaná funkce

Zdroj: vlastní práce

3.4 Analytické řešení úlohy

Derivujme funkci f:

$$f(x) = 25\sqrt{a^2 + x^2} + 15\left(\sqrt{b^2 - a^2} - x\right),$$

$$f'(x) = 25\frac{x}{\sqrt{a^2 + x^2}} - 15.$$

EVROPSKÁ UNIE / UNIA EUROPEJSKA EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO

Z podmínky pro stacionární body funkce fokamžitě dostáváme:

$$f'(x) = 0 \quad \Rightarrow \quad 25\frac{x}{\sqrt{a^2 + x^2}} - 15 = 0 \quad \Rightarrow \quad x = \frac{3a}{4}$$

4 ZÁVĚR

Od studentů jsme obdrželi velmi pozitivní zpětnou vazbu v souvislosti se začleněním extremálních úloh do matematických přednášek. GeoGebra je jeden z nejlepších programů pro vizualizaci takových úloh, a přispívá k lepšímu pochopení kalkulu.

PODĚKOVÁNÍ

Autoři děkují za podporu svému pracovišti.

LITERATURA

- R. J. Harshbarger, J. J. Reynolds. *Calculus with Applications*. Lexington, MA: D. C. Heath & Company, 1990.
- 2. G. James. Modern Engineering Mathematics. MA: Addison-Wesley, 1992.
- 3. W. F. Trench. Introduction to Real Analysis. (free ed. 1.02).
- 4. http://www.geogebra.org
- 5. http://www.geogebra.org/en/wiki

EXTREMÁLNÍ ÚLOHY ŘEŠENÉ V PROGRAMU GEOGEBRA

Abstrakt: Řešení aplikovaných úloh je jeden z vhodných způsobů pro lepší pochopení matematických konceptů především pro budoucí inženýry. Díky své interaktivitě je GeoGebra velmi užitečný nástroj pro modelování takových úloh.

Klíčová slova: GeoGebra, extremální úlohy.

EXTREMA PROBLEMS SOLVED IN GEOGEBRA

Abstract: The solving of applied problems is a reasonable way to gain better understanding of mathematical concepts, especially for future engineers. GeoGebra is a very useful tool for modeling these problems thanks to its interactivity.

Keywords: GeoGebra, extrema problems.

Datum odeslání článku do redakce: 04.2017 Datum přijetí článku redakcí: 05.2017

Mgr. Zuzana MORÁVKOVÁ, Ph.D., VŠB – Technická univerzita Ostrava Katedra matematiky a deskriptivní geometrie 17. listopadu 15, 708 33, Ostrava, Česká republika tel.: +420 597 324 152, e-mail: zuzana.moravkova@vsb.cz

RNDr. Petr VOLNÝ, Ph.D.,
VŠB – Technická univerzita Ostrava
Katedra matematiky a deskriptivní geometrie
17. listopadu 15, 708 33, Ostrava, Česká republika
tel.: +420 597 324 152, e-mail: petr.volny@vsb.cz