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Abstract: From the mathematical point of view, the contact shape optimization is a problem
of nonlinear (usually nonsmooth) optimization with a specific structure which can be exploited
in its solution. In this paper, we show how to overcome the difficulties related to the nonsmooth
cost function by using the proximal bundle method. To illustrate the performance of the
presented algorithm, we solve a shape optimization problem associated with the discretized
two-dimensional contact problem with Coulomb’s friction.
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1 Introduction

Shape optimization problems arise naturally in mechanical engineering whenever the design
requirements include an optimal performance of a machine comprising several bodies in mutual
contact. From the mathematical point of view, these problems can be characterized by a
locally Lipschitz continuous cost function which is differentiable in most but not all points.
Shape optimization problems have the following form:

minimize f(x)
subject to x ∈ Ω ⊂ R

n.

}

(1)

The solution of such problems can be obtained by a suitable iterative algorithm – its typical
structure reads as in Tab 1. The hardest difficulty is the direction searching in Step 2 since the
cost function f is not differentiable but only locally Lipschitz continuous. This implies that to
minimize the function f , we can choose an algorithm from the following two classes: derivative-
free methods (like genetic algorithms) and methods that use the subgradient information (like
subgradient or bundle methods). Since the subgradient information is available for our problem,
we have chosen the latter class of algorithms. In this paper, the proximal bundle method (see [4]
or [6]) is presented. This method needs the function value f(x) and one (arbitrary) Clarke
subgradient of f at x in every step of the iteration process.
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Table 1: Basic iterative algorithm.

Step 0: (Initialization)
Find a feasible starting point x1 ∈ Ω and set k = 1.

Step 1: (Stopping criterion)
If xk is "close enough" to the required solution then STOP.

Step 2: (Direction finding)
Find a feasible descent direction dk ∈ R

n:

f(xk + tdk) < f(xk) and xk + tdk ∈ Ω for some t > 0.

Step 3: (Line search)
Find a step size tk > 0 such that

tk ≈ arg min
t>0

{f(xk + tdk)} and xk + tdk ∈ Ω.

Step 4: (Updating)
Set xk+1 = xk + tkdk, k = k + 1 and go on to Step 1.

Main definitions are introduced in the beginning of this article and then the following section
presents description of the proximal bundle method. To show the functionality of the presented
algorithm, we solve a shape optimization problem with the discretized two-dimensional contact
problem with Coulomb’s friction in the last part.

2 Nonsmooth analysis - calculus of Clarke

We start this section with definition of Lipschitz continuity and generalized gradient.

Definition 1 A function f : Ω ⊂ R
n → R is said to be Lipschitz continuous on Ω if there exists

some constant L = L(Ω) > 0 such that

|f(x)− f(y)| ≤ L‖x − y‖, ∀x, y ∈ Ω. (2)

Definition 2 A function f : Rn → R is said to be Lipschitz continuous at x ∈ R
n if there exists

a neighbourhood U of x and a constant L = L(U) > 0 such that

|f(x)− f(y)| ≤ L‖x − y‖, ∀y ∈ U. (3)

Definition 3 A function f : Rn → R is said to be locally Lipschitz continuous in R
n if this

function f is Lipschitz continuous at x ∈ R
n for every x ∈ R

n.

Definition 4 Let Ω ⊂ R
n. Then conv (Ω) denotes the convex hull of the set Ω, which is defined

by

conv (Ω) =

{ n
∑

i=1

λixi

∣

∣

∣

∣

n ∈ N, λ ∈ R
n, x1, · · · , xn ∈ Ω, λi ≥ 0, ∀i,

n
∑

i=1

λi = 1

}

. (4)

Definition 5 Let the objective function f : Rn → R be locally Lipschitz continuous (in R
n).

The generalized gradient of the objective function f at x ∈ R
n is the set

∂f(x) = conv

{

g ∈ R
n

∣

∣

∣

∣

g = lim
i→∞

∇f(xi), xi → x, xi /∈ Ωf

}

, (5)

where Ωf = {x ∈ R
n, f is not differentiable in x}. Each element g ∈ ∂f(x) is called a subgra-

dient of the objective function f at x.
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We now illustrate the previous definition Def. 5. Let us consider the function

f(x) = |x − 1| + |x| + |x+ 1|.

Figure 1 shows the graph of the function f (left) and graph of its general gradient.

Figure 1: Graph of function f (left) and graph of its general gradient (right).

3 Description of the proximal bundle method

Consider the following nonlinear constrained optimization problem

minimize f(x)
subject to Cx ≤ b,

xmin ≤ x ≤ xmax,







(6)

where the objective function f : Rn → R is locally Lipschitz continuous in R
n, C ∈ R

m×n is
an constraint matrix, b ∈ R

m is a right-hand side vector and xmax ∈ R
n, xmin ∈ R

n are bound
vectors. To make these notations simple we suppose that the simple bounds xmin, xmax are
included in the linear system Cx ≤ b. For further details on the proximal bundle method the
interested reader is reffered to [4].

3.1 Direction finding

Our aim is to solve the problem with respect to d ∈ R
n

minimize f(xk + d)− f(xk),
subject to xk + d ∈ Ω,

}

(7)

where Ω = {x ∈ R
n | Cx ≤ b} and d is the descent direction .

Suppose that we have some starting point x1 ∈ Ω, the current iteration point xk ∈ Ω and
that we have subgradients gf

j ∈ ∂f(yj) for all j ∈ Jk
f , where Jk

f ⊂ {1, . . . , k} is a nonempty
index set and where yj ∈ Ω is an auxiliary point. Denoting

fk
j = f (yj) +

(

gf
j

)T

(xk − yj) , (8)
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the linearization of our cost function is

f j (x) = fk
j +

(

gf
j

)T

(x − xk) for all j ∈ Jk
f , (9)

but we can rewrite the formulation (8) into its recursive form

fk+1

j = fk
j +

(

gf
j

)T

(xk+1 − xk) for all j ∈ Jk
f . (10)

Moreover, we can employ this linearization for polyhedral approximation of the objective func-
tion (e.g. in Fig. 2)

f̂k(x) = max
{

f j(x)
∣

∣ j ∈ Jk
f

}

(11)

and then we can define the improved polyhedral function Ĥk

Ĥk(x) = f̂k(x)− f(xk) for all x ∈ R
n. (12)

Figure 2: Illustration of the linearization.

By employing the proximal bundle idea 1 and after a series of adjustments, we can rewrite
the whole problem (7) into its dual form

min
λ,ν

1

2uk
‖

∑

j∈Jk
f

λjg
k
j +

∑

i∈I

νiCi‖
2 +

∑

j∈Jk
f

λjα
k
f,j +

∑

i∈I

νiα
k
C,i

subject to
∑

j∈Jk
f

λj = 1 and λ, ν ≥ 0,











(13)

where uk is the weight, αk
f,j are subgradient errors

(

αk
f,j = f(xk)− fk

j , for j ∈ Jk
f

)

and αk
C,i are

errors of the constraints subgradients
(

αk
C,i = −Cixk + bi, for i ∈ I = {1, . . . , m}

)

. We denote
the solution of the problem (13) as vector (λk, νk). The descent direction dk is given as

dk = −
1

uk





∑

j∈Jk
f

λk
j gk

j +
∑

i∈I

νk
i Ci



 (14)

and the awaited decrease vk can be computed as

vk = −
1

uk

∥

∥

∥

∥

∥

∥

∑

j∈Jk
f

λk
j gk

j

∥

∥

∥

∥

∥

∥

2

−
∑

j∈Jk
f

λk
j αk

f,j −
∑

i∈I

νk
i Ci < 0. (15)

1The idea of adding a penalty to be able to limit the step length.
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3.2 Subgradient aggregation

There is still one hidden but equally important difficulty in the problem (13). Let us
consider the index set Jk

f . The simplest way to choose this set seems to let

Jk
f = {1, . . . , k} . (16)

However, this is not the right idea. Because, in every iteration step, the index set will enlarge
which causes larger and larger memory requirements. In 1985, Kiwiel presented the subgra-
dient aggregation strategy. The idea is to aggregate the constraints made up by the previous
subgradients. This strategy allows us to keep the quantity of constraints bounded. We denote
the aggregate subgradient by pk

f . For more details see [4].

3.3 Nonconvexity

Let us recall that αk
f,j = f(xk)− fk

j is the linearization error. If f is convex, then αk
f,j ≥ 0

for all j ∈ Jk
f and f j(x) ≤ f(x) for all x ∈ Ω. It means that our linearization approximates

the cost function f from bellow and αk
f,j indicates how good our linearization is. But this is

true only if the cost function f is convex. Unfortunately, in the nonconvex case, the inequality
f j(x) ≤ f(x) is not valid at every x ∈ Ω. The linear approximation can be above the cost
function f and the linearization error may takes values less then zero (see Fig. 3).

Figure 3: Linear approximation of a nonconvex function.

We have to generalize the subgradient error αk
f,j. To achieve this, we will need some

information about the distance between the trial point yj and the actual iteration point xk.

Definition 6 Let us define the distance measure at every iteration k by

sk
j =







‖xj − yj‖+
k−1
∑

i=j

‖xi+1 − xi‖ for j = 1, . . . , k − 1

‖xk − yk‖ for j = k

(17)

And now we are able to define the subgradient locality measure.

Definition 7 At every iteration step k, the subgradient locality measure is defined by

βk
j = max

{

|αk
f,j|, γ

(

sk
j

)2
}

for all j ∈ Jk
f , (18)

where γ ≥ 0 is the distance measure parameter which is equal to zero, when the cost function
is convex.

We choose the parameter γ heuristically. We denote the aggregate subgradient locality measure
by β̃k

f,p.
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3.4 Line search

The descent direction dk is known. But we do not know yet how far we can go in the
direction dk to evaluate the next value xk+1. A solution to this problem was presented by
Kiwiel in 1990 in his contribution [3].

3.5 Weight update

One of the last but still very important question is the choice of weight update uk. We
cannot keep uk constant, because it could make some difficulties (e.g. if the parameter uk is
large, values |vk| and ‖dk‖ will be very small and therefore the decrease will be small). This
difficulty was also solved by Kiwiel in 1990. The whole weight update strategy can be found in
the book [4] and in the article [3].

3.6 Several conclusion notes about proximal bundle method algorithm

At the beginning of our algorithm, we need to set several parameters such as stopping
tolerance εS > 0, which is used in the stopping criterion, the maximum number of stored
subgradients Mg ≥ 2 and distance parameter γ > 0.

In the next step of the algorithm, we should find multipliers λk
j by solving the dual prob-

lem (13). In the algorithm, there is also implemented the stopping criterion. We need to
evaluate whether wk ≤ εS, where wk =

1

2
‖pk

f‖2 + β̃k
f,p, holds or not. If so, the algorithm stops

and we obtain the desired result. Otherwise the algorithm continues by line search and after
finding the step size, we make the linearization update.

The final part of the algorithm consists of the weight update and the index set updating
Jk+1

f = Jk
f ∪ {k + 1}, but if the size of Jk+1

f > Mg, we set Jk+1

f = Jk+1

f \
{

min j | j ∈ Jk+1

f

}

.
Now it remains to increase the iteration counter k by 1 and to repeat the whole algorithm from
the part with the dual problem.

4 Numerical experiment

The proximal bundle method described in the previous section will now be used to solve
a model example. We chose the shape optimization of a discretized two-dimensional contact
problem with Coulomb friction as the model example. Shape optimization is a part of the opti-
mal control in which the control variables are linked to the geometry of elastic bodies that are in
contact. The aim of the problem on the lower level which is contact problem with friction is to
find the set of the state variables for the fixed vector of control variables. The state vector con-
tains variables which describe the displacements and the normal stress on the contact boundary.
Hereafter the contact problem with Coulomb friction will be considered as the state problem.
The mapping describing the solution of the state problem for the prescribed control variable
is named as the control–state mapping. A typical feature of the contact shape optimization
with Coulomb friction is its nonsmooth character due to the fact that the respective control–
state mapping is typically nondifferentiable. Shape optimization of a discretized 2D contact
problem with Coulomb friction was considered in [1]. Shape optimization of a discretized 3D
contact problem with Coulomb friction was considered in [2]. Sensitivity analysis (computation
of the subgradients of the minimized function) with help of calculus of Clarke (for 2D case)
and calculus of Mordukhovich (for 3D case) was proposed in [1], [2]. In this contribution, we
approximate subgradients only numerically by the forward finite difference approximation.
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Example 1 Now let us deal with the shape optimization of a discretized two-dimensional con-
tact problem with Coulomb friction only briefly. Let J be a cost function. The shape optimiza-
tion problem is defined generally as follows

minimize J (α, S(α))

subject to α ∈ Uad,

}

(19)

where the admissible set Uad is given by

Uad :=
{

α ∈ R
d : 0 ≤ αi ≤ C0, i = 0, 1, . . . , d − 1; |αi+1 − αi| ≤ C1h, i = 0, 1, . . . , d − 2;

C21 ≤ meas Ω(α) ≤ C22} .

We will try to smooth down the peaks of the normal contact stress distribution. To this
aim, we should minimize the max-norm of the discrete normal contact stress λ. The objective
function J , however, must be continuously differentiable to ensure that the composite function
J (α, S(α)) is locally Lipschitz, so we will use the p power of the p norm of the vector λ with
p = 4 as the objective function J . The shape optimization problem then reads as follows:

minimize ‖λ‖4

4

subject to α ∈ Uad.

}

(20)

The vector α denotes the control vector, u denotes the displacement and λ denotes the
normal stress and mapping S : α ∈ Uad ⊂ R

d → (u, λ) ∈ R
3p denotes the control–state mapping.

Number d is the dimension of the control vector α, p is the number of the nodes of the discretized
elastic body Ω(α) and Uad is the set of the admissible control variables. For more detailed
description, see [1].

The shape of the elastic body Ω(α), α ∈ Uad, is defined through a Bézier function Fα as
follows (cf. Fig. 4):

Ω(α) = {(x1, x2) ∈ R
2 | x1 ∈ (0, a), Fα(x1) < x2 < b},

where the vector α contains the control points of the Bézier function Fα.

Figure 4: The elastic body and applied loads.

From Fig. 4 we can also see the distribution of external pressures on the boundary ΓP ,
given as P 1 = (0;−200 MPa) on (0, a) × {b}, while P 2 = (100 MPa; 40 MPa) on {a} × (0, b)
Further, Γu is the part of the boundary where the zero displacements are prescribed.
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The set of the admissible designs Uad and the elastic body Ω(α) is specified as follows:
a = 2, b = 1 and C0 = 0.75, C1 = 1, C21 = 1.8, C22 = 2. The Young modulus E = 1 GPa
and the Poisson constant σ = 0.3 are used for the definition of the mapping S. The value
of the coefficient of the Coulomb friction is 0.25. The state problem on Ω(α) is discretized by
isoparametric quadrilateral elements of Lagrange type. The total number of nodes (vertices of
quadrilaterals) is 3976 for any α ∈ Uad. The dimension of the control vector α, generating the
Bézier function and defining Ω(α), is d = 8.

The stopping tolerance was set to εS = 1 · 10−6. This required precision was reached after
11 iterations. We depict the initial shape and the distribution of the von Mises stress in the
loaded initial body in Fig. 5 . Figure 6 shows the optimal shape and the von Mises stress in
the deformed optimal body. Finally, figure Fig. 7 compare the contact normal stresses for the
initial and optimal shape, respectively. Note that during the optimization process the initial value
J (α0) = 2.8612 · 1011 of the cost functional dropped to J (αopt) = 1.0695 · 1011. The decrease of
the peak stress is also quite significant. The experiment was carried out in Mathworks Matlab.

Figure 5: Example, initial design – the initial shape of the body (left) and the distribution of
the von Mises stress in the deformed initial body (right).

Figure 6: Example, optimal design – the optimal shape of the body (left) and the distribution
of the von Mises stress in the deformed optimal body (right).
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Figure 7: Example, normal stress for initial (left) and optimal (right) design.

Conclusion

In this contribution we have briefly introduced the proximal bundle method for nonsmooth
optimization problems with linear constraints and with simple bounds. We outlined the im-
plemented algorithm, which was employed to solve our model example. Then we tried to deal
with the shape optimization of a discretized 2D contact problem with Coulomb friction.
The work is partially supported by Grant of SGS No. SP2017/122, VŠB–Technical University
of Ostrava, Czech Republic.
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Řešení úlohy tvarové optimalizace pro kontaktní
úlohu pomocí proximal bundle metody

Abstrakt: Úlohu tvarové optimalizace pro kontaktní úlohu můžeme popsat jako úlohu ne-
lineární optimalizace. Velmi často jde o úlohu nehladké optimalizace. V tomto příspěvku
si ukážeme, jak minimalizovat cenovou funkci, která je nediferencovatelná. K tomu použi-
jeme proximal bundle metodu. V příspěvku popíšeme postup minimalizace nediferencovatelné
funkce, včetně linearizace, hledání směru poklesu, výpočtu délky kroku a návrhu ukončující
podmínky. Abychom ukázali efektivitu této metody, použijeme ji pro řešení úlohy tvarové op-
timalizace pro 2D kontaktní úlohu s Coulombovým třením.

Klíčová slova: nehladká optimalizace, Clarkeův kalkul, proximal bundle metoda, tvarová
optimalizace.
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