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Abstract: The optical diffraction on a periodical interface belongs to relatively less exploited
applications of the boundary integral equations method. This contribution presents a less
frequent formulation of the diffraction problem based on vector tangential fields. There are
discussed properties of obtained boundary operators with singular kernel and several problems
related to a numerical implementation.
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✶ ■♥#$♦❞✉❝#✐♦♥

The diffraction of an optical wave on a periodical interface between two media belongs
to frequently solved problems, especially, when the grating period Λ is comparable with the
wavelength λ of the incident beam. Among other, these phenomena are studied and exploited
for nanostructured optical elements design. Naturally, the theoretical modelling is of great
importance in such cases. In the last two decades, there were published numerous works treating
of the optical diffraction in periodical structures - see [1] and references therein. One of the
relatively new approaches is based on the Boundary Integral Equations (BIE). In this article, we
present one special integral formulation of the boundary problem for the system of the Maxwell
equations based on the tangential vector fields and propose a numerical implementation. Unlike
the usually used rigorous coupled waves algorithm (RCWA) advantageous in the far fields
analysis [1], the BIE models enable effective modelling of near fields in the spatially modulated
region.

✷ ❋♦$♠✉❧❛#✐♦♥ ♦❢ ♣$♦❜❧❡♠

Let S : x3 = f(x1) in R
3 be a smooth surface that is periodically modulated in the

coordinate x1 with the period Λ and uniform in the x2 direction. The interface S with the
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normal vector ν divides the space into two semi-infinite homogeneous domains

Ω(1) = {(x1, x2, x3) ∈ R
3, x3 > f(x1)}, Ω(2) = {(x1, x2, x3) ∈ R

3, x3 < f(x1)}
with the constant relative permittivities ε(1) Ó= ε(2), ε(1) ∈ R and ε(2) ∈ C, Re (ε(2)) > 0,
Im (ε(2)) ≥ 0, and, the relative permeabilities µ(1) = µ(2) = 1 (both the materials are magneti-
cally neutral), see Fig.1.

Figure 1: Semi-infinite domains with common periodical boundary

We aim to solve the optical diffraction problem for a monochromatic plane wave with
the wavelength λ, i.e. with the wave number k0 = 2π/λ, that is incoming from the domain
Ω(1) under the angle of incidence θ measured from the x3 direction. We seek for the space-
dependent amplitudes E(j) = E|Ω(j) , H(j) = H|Ω(j) of the electromagnetic field intensity vectors
E(x1, x2, x3)e

−iωt, H(x1, x2, x3)e
−iωt, where ω = c/λ and c represents the light velocity in the

free space. The unknown intensities can be written as (the subscript 0 denotes the incident
field)

E =

{

E
(1)
0 +E(1) in Ω(1),

E(2) in Ω(2),
H =

{

H
(1)
0 +H(1) in Ω(1),

H(2) in Ω(2).
(1)

In the media without free charges, the vectors E(j), H(j), j = 1, 2 fulfil the Maxwell equations

∇ × E(j) = ik0µH(j) , ∇ × H (j) = −ik0ε(j)E(j) in Ω(j) , (2)

∇ · E(j) = 0, ∇ · H(j) = 0 in Ω(j) , (3)

and their tangential components are continuous on the boundary

ν × (E(1) − E(2)) = o , ν × (H (1) − H (2)) = o on S . (4)

For the far fields, the well-known Sommerfeld’s radiation convergence conditions at infinity
hold that enable to consider the problem on the common interface S only [3].

In the following we solve the problem (2)–(4) for the transverse magnetic (TM) polariza-
tion of the incident wave for which E(j) = (E

(j)
1 , 0, E

(j)
3 ), H(j) = (0, H

(j)
2 , 0). The Maxwell

equations (2),(3) lead to the Helmholtz equations for the scalar components H
(j)
2 ,

∆H
(j)
2 + k20ε

(j)H
(j)
2 = 0 on Ω(j) , j = 1, 2. (5)
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Denoting x = (x1, x3), y = (y1, y3), the periodical fundamental solution of the Helmholtz
equation in Ω(j) can be written as [7]

Ψ(j)(x, y) =
1

2iΛ

∞
∑

m=−∞

Ψ(j)m (x, y) , Ψ(j)m (x, y) =
1

β
(j)
m

ei(αm(x1−y1)+β
(j)
m |x3−y3|) , (6)

where αm, β
(j)
m are the propagation constants defined as

αm = α+ (2πm)/Λ , α = k0
√

ε(1) sin θ , α2m +
(

β(j)m

)2
= k20ε

(j) . (7)

In further considerations we exploit the following property of the functions Ψ(j).

Theorem 1. For both of the function Ψ(j)(x, y) defined by (6) and for an arbitrary but fixed
x ∈ R

2 the difference

Ψ̃(j)(y) = Ψ(j)(x, y)− 1

2π
ln

1

‖x − y‖ (8)

is continuous in R
2.

The proof of this theorem was presented in [9].

✸ ▼❛#❤❡♠❛#✐❝❛❧ ♠♦❞❡❧

We formulate the problem (2)–(4) as the boundary integral equations for the tangential
fields

J = ν × E(1) = ν × E(2), I = −ν × H(1) = −ν × H(2) , (9)

where ν is an unit normal vector of the boundary S oriented as shown in Fig.1. Similarly, τ

represents an unit tangential vector of S. On the boundary we can write J = −J2e2, where
J2 = τ · E(1) = τ · E(2); and, I = Iτ τ , where Iτ = −H

(1)
2 = −H

(2)
2 .

For the boundary points ξ = (ξ1, ξ3), η = (η1, η3) on the interface SΛ : η3 = f(η1),
η1 ∈ 〈0,Λ〉 we obtain the following system of the boundary integral equations [4]

J2(ξ) = −J0(ξ)− ik0τ ξ ·
∫

SΛ

Iτ τ η(Ψ
(1) −Ψ(2)) dlη

− 1

ik0
τ ξ ·

∫

SΛ

1

σ

dIτ

dη1
∇η

(

1

ε(1)
Ψ(1) − 1

ε(2)
Ψ(2)

)

dlη + νξ ·
∫

SΛ

J2∇η(Ψ
(1) −Ψ(2)) dlη , (10)

Iτ (ξ) = −I0(ξ)− ik0

∫

SΛ

J2(ε
(1)Ψ(1) − ε(2)Ψ(2)) dlη +

∫

SΛ

Iτ νη · ∇η

(

Ψ(1) −Ψ(2)
)

dlη , (11)

where the terms J0(ξ) and I0(ξ) represent the incident wave in Ω(1).
To derive these equations it was necessary to study properties of the integral operators

V
(j)v(x) =

∫

SΛ

v(η)Ψ(j)(x, η) dlη , W
(j)v(x) =

∫

SΛ

v(η)
∂Ψ(j)(x, η)

∂νη

dlη ,
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L
(j)v(x) =

∫

SΛ

v(η)∇ηΨ
(j)(x, η) dlη , j = 1, 2 (12)

when the inner point x tends to the boundary point ξ in the normal direction.
Whereas the first and the second of them are the well-known single and double layer

potentials, the third one is worth to mention.

Theorem 2. If S is the smooth boundary of the domain Ω ⊂ R
2 with the unit outward normal

ν and v ∈ C(S), then

lim
x→ξ

L
(j)v(x) =

∫

SΛ

v(η)∇ηΨ
(j)(ξ, η) dlη ± 1

2
v(ξ)νξ , (13)

where ξ ∈ S, minus holds for x ∈ Ω and plus for x ∈ R
2 \ Ω̄.

This theorem is the vector generalization of the well-known statements for scalar integral
operators, see e.g. [8] , Chapter 6.

To simplify calculations we introduce the parametrization

π : 〈0, 2π〉 → R
2 , π(t) = (p(t), q(t)) (14)

of the curve x3 = f(x1) having the unit normal vector ν(t) with the norm ν(t) =
√

p′(t)2 + q′(t)2.
The resulting system of the boundary integral equations for the scalar components Iτ and

J2 derived in [4] is of the following form:

−ik0µτ (s) ·
2π
∫

0

Iτ (t)τ (t)
(

Ψ(1)(s, t)−Ψ(2)(s, t)
)

ν(t) dt

− 1

ik0
τ (s) ·

2π
∫

0

ρIτ (t)∇t

[

1

ε(1)
Ψ(1)(s, t)− 1

ε(2)
Ψ(2)(s, t)

]

ν(t) dt

+ J2(s)− ν(s) ·
2π
∫

0

J2(t)∇t

[

Ψ(1)(s, t)−Ψ(2)(s, t)
]

ν(t) dt = −J2,0(s) , (15)

Iτ (s) + ik0

2π
∫

0

J2(t)
(

ε(1)Ψ(1)(s, t)− ε(2)Ψ(2)(s, t)
]

ν(t) dt

−
2π
∫

0

Iτ (t)ν(t) · ∇t

[

Ψ(1)(s, t)−Ψ(2)(s, t)
]

ν(t) dt = −Iτ,0(s) , (16)

where the functions Ψ(j)(s, t) in the operators kernels are the parametrized periodical funda-
mental solutions (6) of the Helmholtz equation (5) in Ω(j).

Note, that the singularity of the logarithmic type is of the key importance, because it
enables to split the operators into the compact ones with the continuous kernels and the other
with the logarithmic singularity:

Ψ(j)(s, t) = Ψ(j)r (s, t) + ψ(s, t) (17)
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with the regular part

Ψ(j)r (s, t) = Ψ
(j)
0 (s, t) +

∑

m ∈ Z

m Ó= 0

(

Ψ(j)m (s, t)− 1

2π

e−im(s−t)

2|m|

)

, (18)

and, the sigular one

ψ(s, t) =
1

2π
ln

∣

∣

∣

∣

2 sin
s − t

2

∣

∣

∣

∣

=
1

2π

∑

m ∈ Z

m Ó= 0

e−im(s−t)

2|m| . (19)

✹ ◆✉♠❡%✐❝❛❧ ✐♠♣❧❡♠❡♥,❛,✐♦♥

To solve the system of the boundary integral equations (15),(16) we use the collocation
method with 2N + 1 equidistant collocation points sj =

2πj

2N
, j = 0, . . . , 2N .

We seek for the discrete solutions

Iτ (s) =
2N
∑

k=0

ckφk(s) , J2(s) =
2N
∑

k=0

dkφk(s) (20)

with an interpolation basis {φk}2Nk=0. The choice of the best basis functions system appears to
be very important. The system of trigonometric polynomials, linear splines (piecewise linear
functions) or cubic splines are the usual choices of basis functions. After experiments with
mentioned basis functions we prefer the system of trigonometric polynomials with the nodes
identical with the collocation points (φk(sj) = δkj), i.e.

φk(t) =
1

2N + 1

N
∑

ℓ=−N

e− 2πiℓk
2N+1 eiℓt , k = 0, 1, 2 . . . , 2N . (21)

Furthermore, we find advantageous to take the order N of the boundary discretization
equal to the order of the diffraction modes truncation in the Green function (6), so that

Ψ(j)(s, t) ≈ 1

2iΛ

N
∑

m=−N

Ψ(j)m (s, t) , j = 1, 2 . (22)

Since the integral operators in the solved system are splitted by (17), we evaluate numeri-
cally the compact operators with the continuous kernels – the trapezoidal rule with the nodes
in the collocation points (i.e. tj = sj) gives sufficiently accurate results. The logarithmic-type
singular operators can be evaluated analytically [6].

✺ ◆✉♠❡%✐❝❛❧ %❡/✉❧,/

As an example, we consider the smooth sine boundary

S : x3 =
h

2

(

1 + cos
2πx1
Λ

)

, x1 ∈ 〈0,Λ〉 , Λ = 500 nm, h = 50 nm
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between two regions with the indices of refraction n1 = 1 (air) and n2 = 1.5 (glass), nj =
√

ε(j).
The incident beam of the wavelength λ = 632.8 nm propagates under the given angle of
incidence θ. The Fig. 2 illustrates the increasing accuracy of approximation with growing
discretization order. As analytical solution of the problem is not available we compare numerical
solutions for various values of N .

Obtained results are demonstrated by the absolute value of the complex tangential compo-
nent of the field H at one period of the common boundary. The low discretization orders enable
more perspicuous view because the data calculated at collocation points are nearly equal (in
the graph) roughly for N ≥ 30. Note that we aimed to functionality verification of presented
model as well as of proposed algorithm.

The distribution of reflected field |H(1)
2 | in the superstrate is demonstrated at the Fig. 3

near to the boundary for several incidence angles.

Figure 2: The convergence of the used BEM algorithm (incidence angle θ = 40◦).

❈♦♥❝❧✉&✐♦♥

The result obtained using the presented BEM algorithm shows possible applicability of the
approach based on the tangential fields to the problems, in which the detailed analysis of the
diffracted optical field at an interface and/or in the near region is studied. We suppose to
exploit this method in future to the surface plasmon modelling.
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Abstrakt: Optická difrakce na periodckém rozhraní patří k relativně málo prouzkoumaným
aplikacím metody hraničních integrálních rovnic. V příspěvku je popsána méně obvyklá for-
mulace difrakční úlohy pomocí vektorových tečných polí. Dále jsou diskutovány vlastnosti
odvozených integrálních operátorů se singulárním jádrem stejně jako některé problémy souvise-
jící s numerickou implementací.

Klíčová slova: optická difrakce, tečná pole, metoda hraničních prvků.
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