# THE SEMI-SMOOTH NEWTON METHOD FOR SOLVING THE STOKES FLOW UNDER THE LEAK BOUNDARY CONDITION

#### KUČERA Radek, MOTYČKOVÁ Kristina

IT4Innovations, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, CZ E-mail: kristina.motyckova@vsb.cz

Abstract: We consider the Stokes equations under the leak boundary condition. Using the P1-bubble/P1 finite element approximation we get the algebraic optimization problem. Its optimality conditions are the starting point for the algorithm. We use an active set implementation of the semi-smooth Newton method to find the solution. Numerical experiments demonstrate the computational efficiency of an adaptive diagonal preconditioner.

**Keywords:** Stokes flow, leak boundary condition, semi-smooth Newton method, conjugate gradient method, preconditioning.

#### 1 Introduction

Let  $\Omega$  be a bounded domain in  $\mathbb{R}^2$  with a sufficiently smooth boundary  $\partial\Omega$  that is split into three nonempty disjoint parts:  $\partial\Omega = \overline{\gamma}_D \cup \overline{\gamma}_N \cup \overline{\gamma}_C$ . We consider the model of a viscous incompressible Newtonian fluid modelled by the Stokes system with the Dirichlet and Neumann boundary conditions on  $\gamma_D$  and  $\gamma_N$ , respectively, and with the leak boundary condition of the Navier-Tresca type on  $\gamma_C$ . We are searching for a vector function representing the flow velocity field  $\mathbf{u} : \overline{\Omega} \to \mathbb{R}^2$ ,  $\mathbf{u} = (u_1, u_2)$  and a scalar function representing the pressure field  $p : \overline{\Omega} \to \mathbb{R}$ so that:

$$\begin{array}{c}
-\nu\Delta\mathbf{u} + \nabla p = \mathbf{f} & \text{in } \Omega, \\
\nabla \cdot \mathbf{u} = 0 & \text{in } \Omega, \\
\mathbf{u} = \mathbf{u}_D & \text{on } \gamma_D, \\
\boldsymbol{\sigma} = \boldsymbol{\sigma}_N & \text{on } \gamma_N, \\
u_t = 0 & \text{on } \gamma_C, \\
u_n = 0 \Rightarrow |\boldsymbol{\sigma}_n| \leq g & \text{on } \gamma_C, \\
\sigma_n u_n + g|u_n| + \kappa u_n^2 = 0 & \text{on } \gamma_C, \end{array}\right\}$$
(1)

where  $\nu > 0$  is the viscosity,  $\mathbf{f} : \overline{\Omega} \to \mathbb{R}^2$  describes the forces acting on the fluid,  $\mathbf{u}_D : \gamma_D \to \mathbb{R}^2$ and  $\boldsymbol{\sigma}_N : \gamma_N \to \mathbb{R}^2$  are the Dirichlet and Neumann boundary data, respectively. Further,  $\mathbf{n}$  and **t** are the unit outward normal and tangential vectors on  $\partial\Omega$ , for which we define the normal and tangential components of the velocity and the stress  $u_n = \mathbf{u} \cdot \mathbf{n}$ ,  $u_t = \mathbf{u} \cdot \mathbf{t}$ ,  $\sigma_n = \nu \boldsymbol{\sigma} \cdot \mathbf{n}$ ,  $\sigma_t = \boldsymbol{\sigma} \cdot \mathbf{t}$ , respectively, where  $\boldsymbol{\sigma} = \nu \partial \mathbf{u} / \partial \mathbf{n} - p \mathbf{n}$  is the stress vector on  $\partial\Omega$  in the normal direction corresponding to a non-symmetric tensor. On  $\gamma_C$  we consider the given leak bound  $g: \gamma_C \to \mathbb{R}_+$  and the adhesive coefficient  $\kappa: \gamma_C \to \mathbb{R}_+$  defining the leak boundary condition. We get the classical Navier law for g = 0, while  $\kappa = 0$  leads to the Tresca law. We assume that  $\gamma_D, \gamma_N$ , and  $\gamma_C$  are always non-empty sets.

### 2 Algebraic formulation

After the mixed finite element approximation based on the P1-bubble/P1 finite elements [8] we arrive at the minimization formulation with the following optimality conditions:

$$Find (\mathbf{u}, \mathbf{p}, s_n, \lambda_t) \in \mathbb{R}^{n_u} \times \mathbb{R}^n \times \mathbb{R}^{n_c} \times \mathbb{R}^{n_c} \text{ such that} 
\mathbf{A}\mathbf{u} - \mathbf{l} + \mathbf{N}^T \mathbf{s}_n + \mathbf{T}^T \lambda_t + \mathbf{B}^T \mathbf{p} = \mathbf{0}, 
\mathbf{B}\mathbf{u} - \mathbf{E}\mathbf{p} - \mathbf{c} = \mathbf{0}, 
\mathbf{T}\mathbf{u} = \mathbf{0}, 
(\mathbf{N}\mathbf{u})_i = 0 \Rightarrow |s_{ni}| \leq g_i, 
(\mathbf{N}\mathbf{u})_i > 0 \Rightarrow s_{ni} = g_i + \kappa_i (\mathbf{N}\mathbf{u})_i, 
(\mathbf{N}\mathbf{u})_i < 0 \Rightarrow s_{ni} = -g_i + \kappa_i (\mathbf{N}\mathbf{u})_i, \end{cases} i \in \mathcal{N},$$
(2)

where  $\mathbf{s}_n = \boldsymbol{\lambda}_n + \mathbf{D}(\boldsymbol{\kappa})\mathbf{N}\mathbf{u}$  and  $\mathcal{N} = \{1, ..., n_c\}$ . Here,  $\mathbf{A} \in \mathbb{R}^{n_u \times n_u}$  is the symmetric, positive definite stiffness matrix for the Laplace operator,  $\mathbf{I} \in \mathbb{R}^{n_u}$ ,  $\mathbf{B} \in \mathbb{R}^{n \times n_u}$  is the full row rank stiffness matrix for the divergence operator,  $\mathbf{T}, \mathbf{N} \in \mathbb{R}^{n_c \times n_u}$  are the full row rank matrices given by the normal and tangential vectors at nodes  $\mathbf{x}_i \in \bar{\gamma}_C \setminus \bar{\gamma}_D$ , respectively,  $\mathbf{D}(\boldsymbol{\kappa}) = \operatorname{diag}(\boldsymbol{\kappa}) \in$  $\mathbb{R}^{n_c \times n_c}$ ,  $\boldsymbol{\kappa} = (\kappa_1, ..., \kappa_{n_c})^T \in \mathbb{R}^{n_c}$ ,  $\kappa_i = h_i \kappa(\mathbf{x}_i)$ ,  $g_i = h_i g(\mathbf{x}_i)$ , and  $h_i$  is the length of the segment corresponding to  $\mathbf{x}_i$ ,  $i \in \mathcal{N}$ ;  $n_u$  is the number of the velocity components, n is the number of the finite elements nodes, and  $n_c$  is the number of the leak nodes. The symmetric, positive semidefinite matrix  $\mathbf{E} \in \mathbb{R}^{n_c \times n_c}$  and the vector  $\mathbf{c} \in \mathbb{R}^{n_c}$  arise from the elimination of the bubble components. While the unknowns  $\mathbf{u}$ ,  $\mathbf{p}$  are the vectors of the velocity and pressure components, respectively,  $\boldsymbol{\lambda}_t$ ,  $\boldsymbol{\lambda}_n$  are the Lagrange multipliers and  $\mathbf{s}_n$  approximates the (negative) shear stress  $\sigma_n$ .

#### 3 Semi-smooth Newton method

Its convenient to use the semi-smooth Newton method to find the solution of (2). Firstly, we reformulate the leak boundary condition in (2) as a nonsmooth equation. We introduce the projection on the interval [a, b],

$$P_{[a,b]}(x) = x - \max\{0, x - b\} + \max\{0, a - x\}, \quad x \in \mathbb{R}$$

and represent the leak boundary condition from (2), see Lemma 1 in Appendix such that

$$(\mathbf{N}\mathbf{u})_{i} = \max\{0, \kappa^{-1}(s_{ni} - g_{i})\} - \max\{0, -\kappa^{-1}(s_{ni} + g_{i})\} \quad \text{for} \quad \rho_{i} = \kappa_{i} > 0, \\ \rho_{i}(\mathbf{N}\mathbf{u})_{i} = \max\{0, s_{ni} - g_{i} + \rho_{i}(\mathbf{N}\mathbf{u})_{i}\} - \max\{0, -s_{ni} - g_{i} - \rho_{i}(\mathbf{N}\mathbf{u})_{i}\} \quad \text{for} \quad \kappa_{i} = 0, \end{cases}$$

Firstly, we divide the index set  $\mathcal{N}$  into two sets  $\mathcal{N}_0$  and  $\mathcal{N}_+$  so that  $\mathcal{N} = \mathcal{N}_0 \cup \mathcal{N}_+$  as follows:

$$\mathcal{N}_0 = \{i \in \mathcal{N} : \kappa_i = 0\}, \quad \mathcal{N}_+ = \{i \in \mathcal{N} : \kappa_i > 0\}.$$

Let us write the problem (2) as one equation:

$$\boldsymbol{G}(\mathbf{y}) = 0, \tag{3}$$

where  $\boldsymbol{G}(\mathbf{y}) = (\boldsymbol{G}_1^{\top}(\mathbf{y}), \boldsymbol{G}_2^{\top}(\mathbf{y}), \boldsymbol{G}_3^{\top}(\mathbf{y}), \boldsymbol{G}_4^{\top}(\mathbf{y}))^{\top}$  and  $\mathbf{y} = (\mathbf{u}^{\top}, \mathbf{s}_n^{\top}, \lambda_t^{\top}, \boldsymbol{p}^{\top})^{\top}$ , where  $\boldsymbol{G}_1(\mathbf{y}) = \mathbf{A}\mathbf{u} - \mathbf{l} + \mathbf{N}^T\mathbf{s}_n + \mathbf{T}^T\boldsymbol{\lambda}_t + \mathbf{B}^T\mathbf{p}$ ,

 $G_4(\mathbf{y}) = \mathbf{Tu} \text{ and } G_5(\mathbf{y}) = \mathbf{Bu} - \mathbf{Ep} - \mathbf{c} = \mathbf{0}.$ 

The equation (3) can be solved by the semi-smooth Newton method, because G is semimooth in the sense of [5].

## 4 Algorithm

According to the division of  $\mathcal{N}$ , we define for each  $\mathbf{y}^k$  two types of the inactive sets

$$\mathcal{I}^{+}_{+} = \{ i \in \mathcal{N}_{+} : s^{k}_{ni} \ge g_{i} \}, \quad \mathcal{I}^{-}_{+} = \{ i \in \mathcal{N}_{+} : s^{k}_{ni} \le -g_{i} \}$$

and

$$\mathcal{I}_{0}^{+} = \{ i \in \mathcal{N}_{0} : s_{ni}^{k} + \rho(Nu)_{i} \ge g_{i} \}, \quad \mathcal{I}_{0}^{-} = \{ i \in \mathcal{N}_{0} : s_{ni}^{k} + \rho(Nu)_{i} \le -g_{i} \}$$

or

$$\mathcal{I}_{0}^{+} = \{ i \in \mathcal{N}_{0} : s_{ni}^{k} - \rho r_{i} \ge g_{i} \}, \quad \mathcal{I}_{0}^{-} = \{ i \in \mathcal{N}_{0} : s_{ni}^{k} - \rho r_{i} \le -g_{i} \}$$

and the active sets as their complements  $\mathcal{A}_+ = \mathcal{N}_+ \setminus (\mathcal{I}^+_+ \cup \mathcal{I}^-_+)$  and  $\mathcal{A}_0 = \mathcal{N}_0 \setminus (\mathcal{I}^+_0 \cup \mathcal{I}^-_0)$ .

Further, we define the indicator matrices  $\mathbf{D}(\mathcal{I}_{+}^{-})$ ,  $\mathbf{D}(\mathcal{I}_{+}^{+})$  and  $\mathbf{D}(\mathcal{I}_{0}^{-})$ ,  $\mathbf{D}(\mathcal{I}_{0}^{+})$ , respectively. Note that the indicator matrix to  $\mathscr{S}_{+} \subseteq \mathcal{N}_{+}$  is given by  $\mathbf{D}(\mathscr{S}_{+}) = \operatorname{diag}(s_{1}, ..., s_{n_{c+}}) \in \mathbb{R}^{n_{c+} \times n_{c+}}$ , where  $n_{c+} := |\mathscr{S}_{+}| \leq n_{c}$ , with  $s_{i} = 1$  for  $i \in \mathscr{S}_{+}$  and  $s_{i} = 0$  if  $i \notin \mathscr{S}_{+}$ . The new iterate  $\mathbf{y}^{k+1}$  is computed by solving the following linear system. Moreover, in the case  $\mathcal{N}_{0} \neq \emptyset$  we get  $\mathbf{s}_{n,\mathcal{A}_{0}} = \boldsymbol{\lambda}_{n,\mathcal{A}_{0}}$  and set:

$$\mathbf{s}_{n,\mathcal{I}_0^+} = \mathbf{g}_{\mathcal{I}_0^+}, \qquad \mathbf{s}_{n,\mathcal{I}_0^-} = -\mathbf{g}_{\mathcal{I}_0^-}$$

$$\begin{pmatrix}
\frac{\mathbf{A} \mid \mathbf{N}_{+}^{T} & \mathbf{N}_{\mathcal{A}_{0}}^{T} & \mathbf{T}^{T} & \mathbf{B}^{T} \\
\mathbf{N}_{+} \mid -\mathbf{D}(\boldsymbol{\kappa}_{+})^{-1}\mathbf{D}(\mathcal{I}_{+}^{+} \cup \mathcal{I}_{+}^{-}) & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{N}_{\mathcal{A}_{0}} \mid \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{T} \mid \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{B} \mid \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{E}
\end{pmatrix}
\begin{pmatrix}
\mathbf{u}^{k+1} \\
\mathbf{\lambda}_{n,A_{0}}^{k+1} \\
\mathbf{\lambda}_{t}^{k+1} \\
\mathbf{p}^{k+1}
\end{pmatrix}
=
\begin{pmatrix}
\mathbf{1} - \mathbf{N}_{\mathcal{I}_{0}^{+}}^{T} \mathbf{g}_{\mathcal{I}_{0}^{+}} + \mathbf{N}_{\mathcal{I}_{0}^{-}}^{T} \mathbf{g}_{\mathcal{I}_{0}^{-}} \\
\mathbf{D}(\boldsymbol{\kappa}_{+})^{-1}(\mathbf{D}(\mathcal{I}_{+}^{-}) - \mathbf{D}(\mathcal{I}_{+}^{+}))\mathbf{g}_{+} \\
\mathbf{0} \\
\mathbf{0} \\
\mathbf{c}
\end{pmatrix}.$$
(4)

The conjugate gradient method with adaptive precision control is used to find the solution. As you can see in the section Numerical experiments, it is convenient to use a preconditioner.

### 5 Preconditioning

To solve bigger linear systems and more complex meshes we use the Schur complement to solve (4):

$$\mathbf{S}^{k}\mathbf{r}^{k+1} = \mathbf{C}\mathbf{A}^{-1}\mathbf{l} - \mathbf{h}^{k},$$

where  $\boldsymbol{S}^{k} = \boldsymbol{C}\boldsymbol{A}^{-1}\boldsymbol{C}^{\top} + \bar{\boldsymbol{E}}^{k}$ , where

$$m{C} = \left(egin{array}{c} m{N}_+ \ m{N}_{\mathcal{A}_0} \ m{T} \ m{B} \end{array}
ight), \quad ar{m{E}}^k \left(egin{array}{c} m{D}(m{\kappa}_+)^{-1} m{D}(m{\mathcal{I}}_+^+ \cup m{\mathcal{I}}_+^-) & m{0} & m{0} \ m{0} & m{0} \ m{0} & m{0} \ m{0} & m{0} \ m{0}$$

and

$$\mathbf{r}^{k+1} = \left(egin{array}{c} \mathbf{s}_{n_+}^{k+1} & \ \lambda_{n\mathcal{A}_n}^{k+1} & \ \lambda_t^{k+1} & \ p^{k+1} & \end{array}
ight), \mathbf{h}^k = \left(egin{array}{c} \mathbf{D}(oldsymbol{\kappa}_+)^{-1}(\mathbf{D}(\mathcal{I}_+^-) - \mathbf{D}(\mathcal{I}_+^+))\mathbf{g}_+ \ \mathbf{0} & \ \mathbf{0} & \ \mathbf{0} & \ \mathbf{0} & \ \mathbf{c} & \end{array}
ight)$$

We use the diagonal preconditioner

$$P^k = diag S^k$$

#### 6 Numerical experiments

We consider the L-shaped domain  $\Omega = (0,5) \times (0,2) \setminus \overline{S}$ ,  $S = (0,1) \times (0,1)$  with  $\nu = 1$ and  $\mathbf{f} = \mathbf{0}$ ;  $\gamma_D = \gamma_{top} \cup \gamma_{left}$  with  $\gamma_{top} = (0,5) \times \{2\}$ ,  $\gamma_{left} = \{0\} \times (1,2)$ ,  $\mathbf{u}_{D|\gamma_{top}} = \mathbf{0}$ , and  $\mathbf{u}_{D|\gamma_{left}} = (4(x_2 - 2)(1 - x_2), 0)$ ;  $\gamma_N = \{5\} \times (0,2)$  with  $\boldsymbol{\sigma}_N = \mathbf{0}$ ;  $\gamma_C = \partial\Omega \setminus (\overline{\gamma_D \cup \gamma_N})$  with g = 10 for x < 1 and else g = 1. In tables below we report  $iter/n_S$ , where iter is the number of the outer (Newton) iterations, while  $n_S$  denotes the total number of the matrix-vector multiplications by the Schur complements. Note that  $n_S$  determines the computational efficiency. The computational efficiency without preconditioning for different adhesive coefficients  $\kappa$  is shown in Table 1. One can see that  $n_S$  increases considerable for finer meshes and smaller  $\kappa$ . This unacceptable effect is eliminated by preconditioning, as it is seen from Table 2.

Table 1: The computational complexity for different  $\kappa$  without preconditioning.

|                 | T            | I              |                |                 | I I I I I I I I I I I I I I I I I I I |              |
|-----------------|--------------|----------------|----------------|-----------------|---------------------------------------|--------------|
| $n_u/n/n_c$     | $\kappa = 1$ | $\kappa = 0.5$ | $\kappa = 0.1$ | $\kappa = 0.01$ | $\kappa = 0.001$                      | $\kappa = 0$ |
| 344/206/32      | 15/1358      | 15/1139        | 20/1614        | 23/1984         | 23/1919                               | 10/865       |
| 1352/744/64     | 18/3143      | 18/2666        | 19/2888        | 19/3817         | 24/4925                               | 15/2047      |
| 5366/2819/128   | 16/4248      | 18/5440        | 23/7591        | 20/8558         | 23/12066                              | 18/3889      |
| 21386/10965/256 | 17/6526      | 21/11170       | 17/14308       | 17/14207        | 26/27023                              | 17/5468      |
| 85394/43241/512 | 2 21/17776   | 22/20523       | 24/24900       | 21/29581        | 24/34877                              | 18/8640      |

|                 | 1            |                | 1 1            |                 | 1                |              |
|-----------------|--------------|----------------|----------------|-----------------|------------------|--------------|
| $n_u/n/n_c$     | $\kappa = 1$ | $\kappa = 0.5$ | $\kappa = 0.1$ | $\kappa = 0.01$ | $\kappa = 0.001$ | $\kappa = 0$ |
| 344/206/32      | 8/162        | 10/179         | 10/163         | 16/186          | 7/185            | 7/152        |
| 1352/744/64     | 9/191        | 9/180          | 10/179         | 10/140          | 6/82             | 9/205        |
| 5366/2819/128   | 9/226        | 10/218         | 13/234         | 19/303          | 23/294           | 9/233        |
| 21386/10965/256 | 8/256        | 10/291         | 12/250         | 17/351          | 24/435           | 7/213        |
| 85394/43241/512 | 11/407       | 10/331         | 14/352         | 8/166           | 9/177            | 10/388       |

Table 2: The computational complexity for different  $\kappa$  with preconditioning.



Figure 1: Finite element approximation and velocity field

## Appendix

**Lemma 1** Let  $\lambda, u \in \mathbb{R}^1$ ,  $g \ge 0$ ,  $\kappa \ge 0$ . The relations

$$\begin{aligned} |\lambda| &\leq g \Rightarrow u = 0\\ \lambda &> g \Rightarrow \lambda = g + \kappa u\\ \lambda &< -g \Rightarrow \lambda = -g + \kappa u \end{aligned}$$
 (5)

hold iff

 $\psi(\lambda, u) = 0,$ 

where 
$$\psi(\lambda, u) := \rho u - \max\{0, \lambda - g + (\rho - \kappa)u\} + \max\{0, -\lambda - g + (\kappa - \rho)u\}$$
, see Figure 2.

Proof: We assume g > 0, as g = 0 is trivial. First we prove the implication ' $\Rightarrow$ '. The relations (5) are satisfied. In the first case  $|\lambda| \leq g$  and u = 0 we get  $\psi(\lambda, 0) = 0 - \max\{0, \lambda - g\} + \max\{0, -\lambda - g\} = 0$ . In the second case  $\lambda > g$  and  $\lambda = g + \kappa u$  we get  $\psi(\lambda, u) := \rho u - \max\{0, \rho u\} + \max\{0, -2g - \rho u\} = \rho u - \rho u + 0 = 0$ . In the third case  $\lambda < -g$  and  $\lambda = -g + \kappa u$  we get  $\psi(\lambda, u) := \rho u - \max\{0, -2g - \rho u\} = \rho u - \rho u + 0 = 0$ . In the third case  $\lambda < -g$  and  $\lambda = -g + \kappa u$  we get  $\psi(\lambda, u) := \rho u - \max\{0, -2g + \rho u\} + \max\{0, -\rho u\} = \rho u - 0 - \rho u = 0$ . To prove the opposite implication, we start from  $\rho u = \max\{0, \lambda - g + (\rho - \kappa)u\} - \max\{0, -\lambda - g + (\kappa - \rho)u\}$ . If  $|\lambda| \leq g$  then  $\lambda - g + (\rho - \kappa)u > 0$  and  $-\lambda - g + (\kappa - \rho)u < 0$  or  $-\lambda - g + (\kappa - \rho)u > 0$  and  $\lambda - g + (\rho - \kappa)u = \rho u$  and  $-\lambda - g + (\kappa - \rho)u < 0$ , in the second case  $-\lambda - g + (\kappa - \rho)u = -\rho u$  and  $\lambda - g + (\rho - \kappa)u < 0$ ,  $\lambda - g \leq 0$  as well as  $-\lambda - g \leq 0$ , then u = 0. Analogously, in the case  $\lambda > g$  we get  $\lambda = g + \kappa u$  and  $\lambda = -g + \kappa u$  the last case.



## Conclusion

We have analysed the numerical solution of the Stokes flow with the leak boundary condition of friction type. The analysis is analogical to the analysis of the Stokes flow with stick-slip boundary condition. The numerical experiments have shown that it is necessary to use the preconditioner in the conjugate gradient method to implement a computationally efficient solver.

## Acknowledgments

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II) project "IT4Innovations excellence in science - LQ1602" and from the Large Infrastructures for Research, Experimental Development and Innovations project "IT4Innovations National Supercomputing Center – LM2015070".

## References

- M. Ayadi, L. Baffico, M. K. Gdoura, T. Sassi, Error estimates for Stokes problem with Tresca friction conditions, ESAIM: Mathematical Modelling and Numerical Analysis, 48, 1413–1429 (2014).
- [2] H. Fujita, A mathematical analysis of motions of viscous incompressible fluid under leak and slip boundary conditions, RIMS Kokyuroku, 888, 199–216 (1994).
- [3] H. Fujita, Non-stationary Stokes flow under leak boundary conditions of friction type, Journal of Computational Mathematics, **19**, 1–8 (2001).
- [4] J. Haslinger, R. Kučera, and V. Šátek, *Stokes flow with slip boundary conditions of Coulomb type*, accepted in Mathematics and Mechanics of Solids (2017).
- [5] M. Hintermüller, K. Ito, K. Kunisch, The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13, 865–888 (2003).
- [6] T. Kashiwabara, Finite element method for Stokes equation under leak boundary condition of friction type, SIAM J. Numer. Anal., 51, 2448–2469 (2013).

- [7] R. Kučera, J. Haslinger, V. Šátek, M. Jarošová, Efficient methods for solving the Stokes problem with slip boundary conditions, accepted in Mathematics and Computers in Simulation (2017), https://doi.org/10.1016/j.matcom.2016.05.012.
- [8] J. Koko, Vectorized Matlab codes for the Stokes problem with P1-bubble/P1 finite element, at: http://www.isima.fr/~jkoko/Codes/StokesP1BubbleP1.pdf.
- [9] J. Pacholek, Semi-smooth Newton method for solving the Stokes equations with monotonously increasing slip condition, Diploma thesis, VŠB-TU Ostrava (2017).

## NEHLADKÁ NEWTONOVA METODA PRO ŘEŠENÍ STOKESOVA PROUDĚNÍ S PRŮSAKEM

Abstrakt (Streszczenie): Uvažujeme Stokesovu úlohu s průsakem. Po aproximaci pomocí konečných prvků P1-bubble/P1 dostáváme algebraický optimalizační problém. Jeho podmínky optimality jsou výchozím bodem pro algoritmus. Pro nalezení řešení problému použijeme nehladkou Newtonovu metodu implementovanou pomocí aktivních množin. Numerické experimenty demonstrují výpočetní efektivitu adaptivního diagonálního předpodmíňovače.

Klíčová slova (Słowa kluczowe): Stokesovo proudění, nehladká Newtonova metoda, průsak, metoda konjugovanych gradientu, předpodmínění.