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Abstract: We consider the Stokes equations under the leak boundary condition. Using the
P1-bubble/P1 finite element approximation we get the algebraic optimization problem. Its
optimality conditions are the starting point for the algorithm. We use an active set imple-
mentation of the semi-smooth Newton method to find the solution. Numerical experiments
demonstrate the computational efficiency of an adaptive diagonal preconditioner.
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1 Introduction

Let Ω be a bounded domain in R
2 with a sufficiently smooth boundary ∂Ω that is split

into three nonempty disjoint parts: ∂Ω = γD ∪ γN ∪ γC . We consider the model of a viscous
incompressible Newtonian fluid modelled by the Stokes system with the Dirichlet and Neumann
boundary conditions on γD and γN , respectively, and with the leak boundary condition of the
Navier-Tresca type on γC . We are searching for a vector function representing the flow velocity
field u : Ω̄ → R

2, u = (u1, u2) and a scalar function representing the pressure field p : Ω̄ → R

so that:
−ν∆u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = uD on γD,

σ = σN on γN ,

ut = 0 on γC ,

un = 0 ⇒ |σn| ≤ g on γC ,

σnun + g|un|+ κu2
n = 0 on γC ,
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where ν > 0 is the viscosity, f : Ω̄ → R
2 describes the forces acting on the fluid, uD : γD → R

2

and σN : γN → R
2 are the Dirichlet and Neumann boundary data, respectively. Further, n and
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t are the unit outward normal and tangential vectors on ∂Ω, for which we define the normal
and tangential components of the velocity and the stress un = u · n, ut = u · t, σn = νσ · n,
σt = σ · t, respectively, where σ = ν∂u/∂n − pn is the stress vector on ∂Ω in the normal
direction corresponding to a non-symmetric tensor. On γC we consider the given leak bound
g : γC → R+ and the adhesive coefficient κ : γC → R+ defining the leak boundary condition.
We get the classical Navier law for g = 0, while κ = 0 leads to the Tresca law. We assume that
γD, γN , and γC are always non-empty sets.

2 Algebraic formulation

After the mixed finite element approximation based on the P1-bubble/P1 finite elements [8]
we arrive at the minimization formulation with the following optimality conditions:

Find (u, p, sn, λt) ∈ R
nu × R

n × R
nc × R

nc such that

Au − l+NT sn +TT λt +BT p = 0,

Bu − Ep − c = 0,

Tu = 0,

(Nu)i = 0 ⇒ |sni| ≤ gi,

(Nu)i > 0 ⇒ sni = gi + κi(Nu)i,

(Nu)i < 0 ⇒ sni = −gi + κi(Nu)i,
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where sn = λn +D(κ)Nu and N = {1, ..., nc}. Here, A ∈ R
nu×nu is the symmetric, positive

definite stiffness matrix for the Laplace operator, l ∈ R
nu , B ∈ R

n×nu is the full row rank
stiffness matrix for the divergence operator, T, N ∈ R

nc×nu are the full row rank matrices given
by the normal and tangential vectors at nodes xi ∈ γ̄C\γ̄D, respectively, D(κ) = diag(κ) ∈
R

nc×nc , κ = (κ1, ..., κnc
)T ∈ R

nc , κi = hiκ(xi), gi = hig(xi), and hi is the length of the segment
corresponding to xi, i ∈ N ; nu is the number of the velocity components, n is the number of
the finite elements nodes, and nc is the number of the leak nodes. The symmetric, positive
semidefinite matrix E ∈ R

nc×nc and the vector c ∈ R
nc arise from the elimination of the bubble

components. While the unknowns u, p are the vectors of the velocity and pressure components,
respectively, λt, λn are the Lagrange multipliers and sn approximates the (negative) shear
stress σn.

3 Semi-smooth Newton method

Its convenient to use the semi-smooth Newton method to find the solution of (2). Firstly,
we reformulate the leak boundary condition in (2) as a nonsmooth equation. We introduce the
projection on the interval [a, b],

P[a,b](x) = x −max{0, x − b}+max{0, a − x}, x ∈ R

and represent the leak boundary condition from (2), see Lemma 1 in Appendix such that

(Nu)i = max{0, κ−1(sni − gi)} −max{0, −κ−1(sni + gi)} for ρi = κi > 0,

ρi(Nu)i = max{0, sni − gi + ρi(Nu)i} −max{0, −sni − gi − ρi(Nu)i} for κi = 0,

}

.
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Firstly, we divide the index set N into two sets N0 and N+ so that N = N0 ∪N+ as follows:

N0 = {i ∈ N : κi = 0}, N+ = {i ∈ N : κi > 0}.

Let us write the problem (2) as one equation:

G(y) = 0, (3)

whereG(y) = (G⊤
1 (y), G⊤

2 (y), G⊤
3 (y), G⊤

4 (y))
⊤ and y = (u⊤, s⊤

n , λ⊤
t , p⊤)⊤, whereG1(y) =

Au − l+NT sn +TT λt +BT p,

G2(y) = N+u −max{0, D−1
κ+
(sn+

− g+)}+max{0, −D−1
κ+
(sn+

+ g+)},

G3(y) = ρN 0u −max{0, sn0
− g0 + ρN 0u}+max{0, −sn0

− g0 − ρN 0u},

G4(y) = Tu and G5(y) = Bu − Ep − c = 0.
The equation (3) can be solved by the semi-smooth Newton method, because G is semi-

mooth in the sense of [5].

4 Algorithm

According to the division of N , we define for each yk two types of the inactive sets

I+
+ = {i ∈ N+ : sk

ni ≥ gi}, I−
+ = {i ∈ N+ : sk

ni ≤ −gi}

and
I+

0 = {i ∈ N0 : sk
ni + ρ(Nu)i ≥ gi}, I−

0 = {i ∈ N0 : sk
ni + ρ(Nu)i ≤ −gi}

or
I+

0 = {i ∈ N0 : sk
ni − ρri ≥ gi}, I−

0 = {i ∈ N0 : sk
ni − ρri ≤ −gi}

and the active sets as their complements A+ = N+ \ (I+
+ ∪ I−

+ ) and A0 = N0 \ (I+
0 ∪ I−

0 ).
Further, we define the indicator matrices D(I−

+ ), D(I+
+ ) and D(I−

0 ), D(I+
0 ), respectively.

Note that the indicator matrix to S+ ⊆ N+ is given by D(S+) = diag(s1, ..., snc+
) ∈ R

nc+×nc+ ,
where nc+ := |S+| ≤ nc, with si = 1 for i ∈ S+ and si = 0 if i /∈ S+. The new iterate
yk+1 is computed by solving the following linear system. Moreover, in the case N0 Ó= ∅ we get
sn,A0

= λn,A0
and set:

sn,I+

0
= gI+

0
, sn,I−

0
= −gI−

0
.


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A NT
+ NT

A0
TT BT

N+ −D(κ+)
−1D(I+

+ ∪ I−
+ ) 0 0 0

NA0
0 0 0 0

T 0 0 0 0

B 0 0 0 −E
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nA0

λk+1
t

pk+1













=













l − NT

I+

0

gI+

0
+NT

I−

0

gI−

0

D(κ+)
−1(D(I−

+ )− D(I+
+ ))g+

0

0

c
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









. (4)
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The conjugate gradient method with adaptive precision control is used to find the solution.
As you can see in the section Numerical experiments, it is convenient to use a preconditioner.

5 Preconditioning

To solve bigger linear systems and more complex meshes we use the Schur complement to
solve (4):

Skrk+1 = CA−1l − hk,

where Sk = CA−1C⊤ + Ē
k
, where

C =
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T

B
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We use the diagonal preconditioner

P k = diagSk.

6 Numerical experiments

We consider the L-shaped domain Ω = (0, 5) × (0, 2) \ S, S = (0, 1) × (0, 1) with ν = 1
and f = 0; γD = γtop ∪ γleft with γtop = (0, 5) × {2}, γleft = {0} × (1, 2), uD|γtop

= 0, and
uD|γleft

= (4(x2 − 2)(1 − x2), 0); γN = {5} × (0, 2) with σN = 0; γC = ∂Ω \ (γD ∪ γN) with
g = 10 for x < 1 and else g = 1. In tables below we report iter/nS, where iter is the number of
the outer (Newton) iterations, while nS denotes the total number of the matrix-vector multipli-
cations by the Schur complements. Note that nS determines the computational efficiency. The
computational efficiency without preconditioning for different adhesive coefficients κ is shown
in Table 1. One can see that nS increases considerable for finer meshes and smaller κ. This
unacceptable effect is eliminated by preconditioning, as it is seen from Table 2.

Table 1: The computational complexity for different κ without preconditioning.
nu/n/nc κ = 1 κ = 0.5 κ = 0.1 κ = 0.01 κ = 0.001 κ = 0
344/206/32 15/1358 15/1139 20/1614 23/1984 23/1919 10/865
1352/744/64 18/3143 18/2666 19/2888 19/3817 24/4925 15/2047
5366/2819/128 16/4248 18/5440 23/7591 20/8558 23/12066 18/3889
21386/10965/256 17/6526 21/11170 17/14308 17/14207 26/27023 17/5468
85394/43241/512 21/17776 22/20523 24/24900 21/29581 24/34877 18/8640
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Table 2: The computational complexity for different κ with preconditioning.
nu/n/nc κ = 1 κ = 0.5 κ = 0.1 κ = 0.01 κ = 0.001 κ = 0
344/206/32 8/162 10/179 10/163 16/186 7/185 7/152
1352/744/64 9/191 9/180 10/179 10/140 6/82 9/205
5366/2819/128 9/226 10/218 13/234 19/303 23/294 9/233
21386/10965/256 8/256 10/291 12/250 17/351 24/435 7/213
85394/43241/512 11/407 10/331 14/352 8/166 9/177 10/388

Figure 1: Finite element approximation and velocity field

Appendix

Lemma 1 Let λ, u ∈ R
1, g ≥ 0, κ ≥ 0. The relations

|λ| ≤ g ⇒ u = 0
λ > g ⇒ λ = g + κu
λ < −g ⇒ λ = −g + κu







(5)

hold iff
ψ(λ, u) = 0,

where ψ(λ, u) := ρu −max{0, λ − g + (ρ − κ)u}+max{0, −λ − g + (κ − ρ)u}, see Figure 2.

Proof: We assume g > 0, as g = 0 is trivial. First we prove the implication ‘⇒’. The
relations (5) are satisfied. In the first case |λ| ≤ g and u = 0 we get ψ(λ, 0) = 0−max{0, λ −
g} + max{0, −λ − g} = 0. In the second case λ > g and λ = g + κu we get ψ(λ, u) :=
ρu−max{0, ρu}+max{0, −2g−ρu} = ρu−ρu+0 = 0. In the third case λ < −g and λ = −g+κu
we get ψ(λ, u) := ρu − max{0, −2g + ρu} + max{0, −ρu} = ρu − 0 − ρu = 0. To prove the
opposite implication, we start from ρu = max{0, λ−g+(ρ−κ)u}−max{0, −λ−g+(κ−ρ)u}.
If |λ| ≤ g then λ − g + (ρ − κ)u > 0 and −λ − g + (κ − ρ)u < 0 or −λ − g + (κ − ρ)u > 0 and
λ−g+(ρ−κ)u < 0. In the first case we suppose λ−g+(ρ−κ)u = ρu and −λ−g+(κ−ρ)u < 0,
in the second case −λ − g + (κ − ρ)u = −ρu and λ − g + (ρ − κ)u < 0, λ − g ≤ 0 as well as
−λ − g ≤ 0, then u = 0. Analogously, in the case λ > g we get λ = g + κu and λ = −g + κu
the last case. �
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λ = −g + κu

λ = g + κu
λ

u

−g

g

Figure 2: Projection

Conclusion

We have analysed the numerical solution of the Stokes flow with the leak boundary condi-
tion of friction type. The analysis is analogical to the analysis of the Stokes flow with stick-slip
boundary condition. The numerical experiments have shown that it is necessary to use the pre-
conditioner in the conjugate gradient method to implement a computationaly efficient solver.
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Nehladká Newtonova metoda pro řešení Stokesova

proudění s průsakem

Abstrakt (Streszczenie): Uvažujeme Stokesovu úlohu s průsakem. Po aproximaci pomocí
konečných prvků P1-bubble/P1 dostáváme algebraický optimalizační problém. Jeho podmínky
optimality jsou výchozím bodem pro algoritmus. Pro nalezení řešení problému použijeme
nehladkou Newtonovu metodu implementovanou pomocí aktivních množin. Numerické ex-
perimenty demonstrují výpočetní efektivitu adaptivního diagonálního předpodmíňovače.

Klíčová slova (Słowa kluczowe): Stokesovo proudění, nehladká Newtonova metoda, průsak,
metoda konjugovanych gradientu, předpodmínění.
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