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Abstract: The paper deals with extremely exact, stable, and fast numerical solutions of sys-
tems of differential equations with initial condition – initial value problems. Systems of ordinary
differential equations are solved using variable order, variable step-size Modern Taylor Series
Method. The Modern Taylor Series Method is based on a recurrent calculation of the Taylor
series terms for each time interval. Thus, the complicated calculation of higher order derivatives
(much criticized in the literature) need not be performed but rather the value of each Taylor
series term is numerically calculated.
The paper present the solution of linear and nonlinear problems. As a linear problem, the
telegraph equation was chosen. As a nonlinear problem, the behavior of Lorenz system was
analyzed. All experiments were performed using MATLAB software, the newly developed non-
linear solver that uses Modern Taylor Series Method was used. Both linear and nonlinear
solvers were compared with state of the art solvers in MATLAB.

Keywords: Taylor series method, ordinary differential equations, technical initial value pro-
blems.

1 Introduction

The paper deals with the solution of technical initial value problems (IVPs) representing the
problems which arise from common technical practice (especially from electrical and mechanical
engineering). To solve technical IVPs means to find the numerical solution of the system of
ordinary differential equations (ODEs).

The best-known and the most accurate method of calculating a new value of the numerical
solution of ODE [7]

y′ = f(t, y), y(t0) = y0 , (1)
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is to construct the Taylor series in the form

yi+1 = yi + h · f(ti, yi) +
h2

2!
· f ′(ti, yi) + . . .+

hn

n!
· f [n−1](ti, yi), (2)

where h is the integration step.
The Taylor series can be very effectively implemented as the variable-order, variable-step-

size numerical method [20] – Modern Taylor Series Method (MTSM). The method is based
on a recurrent calculation of the Taylor series terms for each integration step. Therefore, the
complicated calculation of higher order derivatives (much criticized in the literature) does not
need to be performed, but rather the value of each Taylor series term is numerically calculated
[13]. Equation (2) can then be rewritten in the form (3)

yi+1 = DY0 +DY1 +DY2 + · · ·+DYn . (3)

Theoretically, it is possible to compute the solution of homogeneous linear differential equations
with constant coefficients with arbitrary order and with arbitrary accuracy. Let us denote the
ORD as the function which changes during the computation and defines the number of Taylor
series terms in the current integration step (ORDi+1 = n). The resulting system of linear
equations can be effectively solved either sequentially or in parallel.

An important part of the method is an automatic integration order setting, i.e. using
as many Taylor series terms as the defined accuracy requires. Thus it is common that the
computation uses different numbers of Taylor series terms for different integration steps of
constant length.

The following paper is divided into several sections, which consider concrete technical IVPs
and usage of MTSM. In Section 2, the effective numerical solution of a system of linear ODEs
using higher order MTSM is shown and the problem of Telegraph equation is analyzed. The
Section 3 considers the solution of quadratic nonlinear ODEs and the nonlinear Lorenz attractor
problem is discussed. All algorithms of MTSM are efficiently implemented in MATLAB software
[15] using vectorization. Finally, the MTSM algorithms are compared with MATLAB ode
solvers.

Several papers focus on computer implementations of the Taylor series method in a va-
riable order and variable step context (see, for instance TIDES software [3], TAYLOR [10] in-
cluding detailed description of a variable step size version, ATOMF [6], COSY INFINITY [4],
DAETS [17]. The variable step-size variable-order scheme is also described in [2] and [1], where
simulations on a parallel computer are shown. This paper follows the article [5].

2 Solution of linear ODEs

Equation (2) for linear systems of ODEs in the form y′ = Ay + b could be rewritten

yi+1 = yi + h(Ayi + b) + h2

2!
A(Ayi + b) + hn

n!
A(n−1)(Ayi + b) , (4)

where A is the constant Jacobian matrix and b is the constant right-hand side.
Moreover, (4) can be rewritten in the form (3) where Taylor series terms could be computed

recurrently

DY0 = yi , DY1 = h(Ayi + b), DYj+1 =
h

j
ADYj , j = 2, . . . , n − 1 . (5)
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Figure 1: Model of the line – series of S segments

2.1 Telegraph equation

Let us solve the following electric circuit Figure 1, which represents a telegraph line [12,21].
The solution leads to the linear IVP

y′ = Ay + b, y(0) = y0 , (6)

where A is a matrix of constants (R, L, C parameters of circuit), y is a vector of variables
(voltages and currents), b is a vector of constants and y0 is a vector of initial conditions. The
block structure of matrix A and vectors y and b follows

A =

(

A11 A12

A21 A22

)

, y =



















uC1

...
uCS

i1
...

iS



















, b =



















0
...
0
u0

L1
...
0










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



, (7)

where A11, A12, A21 and A22 are individual block matrices with size S × S

A11 =







0 0 · · · 0
...

...
...

...
0 0 · · · −1

R2CS






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−1
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0 0 · · · · · · 0

1
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...
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LS

−1
LS













A22 =







−R1

L1
0 · · · 0

...
...

...
...

0 0 · · · 0






.

For our experiments the capacitances and inductances are the same, C = C1 = · · · = CS =
= 1pF and L = L1 = · · · = LS = 10 nH. Moreover the transmission line is adjusted if
R1 = R2 =

√

L/C = 100Ω. The angular velocity is set ω = 3 · 109rad/s. The input voltage u0

should be generally constant (DC circuit) or harmonic (AC circuit) signal. In the case of DC
circuit the input voltage u0 is hidden in constant right hand side b, see (7). In the case of AC
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circuit the input voltage u0 = U0 sin(ωt) can be computed using auxiliary system of coupled
linear ODEs

u′

0 = ωx , u0(0) = 0
x′ = −ωu0 , x(0) = U0 .

(8)

In our example we use AC circuit with input voltage u0 = sin(ωt). The propagation
constant per unit length of one segment for simple model of transmission line Figure 1 is known
tLC =

√
LC. Then the total delay of input signal could be computed as tdelay = S tLC . The

delay of output voltage uC100 for 100 segments is shown in Figure 2. The time of simulation
was set tmax = 2 tdelay for all experiments.
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Figure 2: Delay of the signal on the transmission line with S = 100 segments

Vectorized MATLAB code of explicit Taylor series expTay with a variable order and va-
riable step size scheme for linear systems of ODEs (6) has been implemented. This algorithm
was tested on a set of examples of telegraph line with different number of segments S. The
MTSM was compared with vectorized MATLAB explicit ode solvers. Both relative and abso-
lute tolerances for all solvers were set to 10−7. Benchmark results for MTSM with fixed number
of integration steps tmax/h = 200 are shown in Table 1 and the results for MTSM with fixed
h are shown in Table 2. Ratios of computation times ratio =ode/expTay > 1 indicate faster
computation of the MTSM in all cases. Each reported runtime is taken as a median value of 100
computations. The MTSM average order (mean(ORD)) could be seen in the last columns of
Table 1, 2. For the linearity and non-stiffness of the problem the ORD function was oscillating
mean(ORD)± 2 during the computation.

Table 1: Time of solutions: explicit Taylor expTay and MATLAB explicit ode solver compa-
rison; expTay with fixed number of steps tmax/h = 200

ode23 ode45 ode113 expTay expTay
S ratio ratio ratio [s] mean(ORD)
200 18.9 7.1 6.2 0.056 20
600 18.6 9.2 6.9 0.199 41
1000 15.7 7.3 4.6 0.538 62
1400 15.9 7.5 4.1 1.005 83
1800 8.2 5.3 2.6 2.738 113
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Table 2: Time of solutions: explicit Taylor expTay and MATLAB explicit ode solver compa-
rison; expTay with fixed integration time step h = 8 · 10−10

ode23 ode45 ode113 expTay expTay
S ratio ratio ratio [s] mean(ORD)
200 30.7 11.9 10.4 0.033 52
600 20.3 10.1 7.5 0.181 51
1000 13.6 6.4 4.1 0.606 51
1400 11.7 5.6 3.1 1.334 51
1800 8.8 5.5 2.6 2.498 51

More comparisons of MTSM numerical solutions of linear ODEs systems could be found
in [16,18].

3 Solution of nonlinear (quadratic) ODEs

In this section, the effective solution of special case of nonlinear quadratic systems of
ODEs is described. The nonlinear quadratic system of ODEs is any first-order ODE that is
quadratic in the unknown function. For such system Taylor series based numerical method can
be implemented in very effective way.

Equation (1) for nonlinear-quadratic systems of ODEs can be rewritten in the form

y′ = Ay2 +Byjk +Cy + b , y(0) = y0 , (9)

where A ∈ R
ne×ne is the matrix for pure quadratic term, B ∈ R

ne×ne(ne−1)/2 is the matrix for
mixed quadratic term, C ∈ R

ne×ne is the Jacobian matrix for linear part of the system, b ∈ R
ne

is the right-hand side for the forces incoming to the system and y0 is a vector of initial conditions
and symbol ne stands for the number of equations in system of ODEs. The unknown function
y2 represents the vector of multiplications (y1y1, y2y2, . . . , yneyne)

T ; the unknown function yjk

represents the vector of mixed terms multiplications (yj1yk1 , yj2yk2 . . . , yjne(ne−1)/2
ykne(ne−1)/2

)T .
The indexes j, k comes from combinatorics C(ne, 2). For simplification we suppose that the
matrices A, B, C and the vector b are constant.

Higher derivatives of such systems (9) can be effectively computed in MATLAB software [15]
using matrix-vector multiplication, e.g. higher derivative y[p] for pure quadratic term with
matrix A can be expressed as

y[p] = A

(

p−2
∑

i=0

y[p−1−i]. ∗ y[i]

(

p − 1

i

)

+ y. ∗ y[p−1]

)

, (10)

where the operation ‘.∗’ stands for element-by-element multiplication, i.e. y[p1].∗y[p2] is a vector
(y

[p1]
1 y

[p2]
1 , . . . , y

[p1]
ne y

[p2]
ne )T . The binomial coefficients

(

p−1
i

)

can be effectively precomputed using
Pascal triangle, for more information see pascal function in MATLAB software [15].

3.1 Lorenz system

Lorenz system explains some of the unpredictable behavior of the weather. The Lorenz
model supposes, that a planet atmosphere consists of a two-dimensional fluid cell which is heated
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from below and cooled from above [9]. The fluid motion can be described by three-dimensional
system of ODEs (11)

x′ = σ(y − x)

y′ = ρx − y − xz (11)

z′ = xy − βz ,

where σ is the Prandtl number, ρ is the Rayleigh number and β is the parameter related to the
physical size of the system. The behavior of the system depends on the values of the parameters
and initial conditions. Small changes in the initial conditions have a significant effect on the
solution. The system (11) could be rewritten in the matrix form (9) where

y =





x
y
z



 , A = 0 , B =





0 0 0
0 −1 0
1 0 0



 , C =





−σ σ 0
ρ −1 0
0 0 −β



 , b =





0
0
0



 .

For the experiments, the parameters σ = 10, β = 8/3 were fixed. We change the parameter
ρ to obtain different behavior of the system (11). For ρ = 28, the chaotic behavior could be
observed (originally used by Lorenz [14]). For large ρ, e.g. ρ = 160, the solution is periodical
(for more information see [11]). For ρ = 23.7, the solution is stable. Two equilibrium points
can be calculated using (12). Initial conditions were then calculated by adding the constant
vector þv = (0, 2, 0) to the equilibrium point Q+. For more information see [9], [8].

Q± = (±
√

β(ρ − 1), ±
√

β(ρ − 1), ρ − 1) (12)

Figure 3 shows the solution of Lorenz system for different values of parameter ρ in yz-plane.

(a) ρ = 28 (b) ρ = 160 (c) ρ = 23.7

Figure 3: Behavior of Lorenz system, yz-plane

Solution in time domain could be seen in Figure 4. The maximum simulation time was set to
tMAX = 100 for all experiments.

- 191 -



(a) ρ = 28 (b) ρ = 160 (c) ρ = 23.7

Figure 4: Time domain

The MATLAB code of explicit Taylor series expTay with a variable order and variable step
size scheme for nonlinear quadratic systems of ODEs (6) has been implemented. This algorithm
was tested on a set of examples of Lorenz system with different ρ parameter. The MTSM was
again compared with vectorized MATLAB explicit ode solvers. Both relative and absolute
tolerances for all solvers were set to 10−10. Results for comparisons MTSM with MATLAB
ode solvers could be found in Table 3. Ratios of computation times ratio =ode/expTay > 1
indicate faster computation of the MTSM in all cases. The number of integration steps could
be found in Table 4. The MTSM order (ORD) is shown in Figure 5.

Table 3: Time of solutions: explicit Taylor expTay and MATLAB explicit ode solver compa-
rison

ode23 ode45 ode113 expTay
ρ ratio ratio ratio [s]
28 200.8 7.3 1.9 0.933
160 196.3 6.9 1.9 2.363
23.7 15.7 7.3 4.6 0.538

Table 4: Number of steps

ρ ode23 ode45 ode113 expTay
28 3993135 322496 19794 2000
160 9907302 774340 48896 4000
23.7 1111529 147928 11029 500

More comparisons of MTSM numerical solutions of non-linear ODEs systems could be
found in [19].

Conclusion

This article dealt with the numerical solution of linear and non-linear systems of ODEs.
The model of the telegraph line was chosen as the example of linear problem, the Lorenz system
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(a) ρ = 28 (b) ρ = 160 (c) ρ = 23.7

Figure 5: Lorenz system: ORD function

as the example of nonlinear one. All experiments were performed using MATLAB software. The
MTSM solver for nonlinear systems of ODEs was successfully implemented. The experiments
clearly showed, that MTSM is suitable for solving both linear and nonlinear systems. Moreover,
the MTSM could be faster and more accurate than state-of-the art ode solvers in MATLAB.

Future work will be focused to the parallelization and hardware representation of the
MTSM.
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Moderní metoda Taylorovy řady v numerické

integraci: část II.

Abstrakt: Článek se zabývá přesným, rychlým a stabilním řešením obyčejných diferenciálních
rovnic (Cauchyho úlohy). Soustavy těchto rovnic jsou řešeny pomocí Moderní metody Tay-
lorovy řady. Tato metoda je proměnného řádu a využívá proměnný integrační krok. Členy
Taylorovy řady se počítají iterativně, díky tomu je možno vypočítat i vyšší derivace.
Článek prezentuje řešení lineárních a nelineárních problémů. Jako lineární problém bylo zvo-
leno řešení telegrafní rovnice, jako nelineární byl zvolen Lorenzův systém. Experimenty byly
provedeny pomocí systému MATLAB s využitím nově implementovaných nástrojů. Moderní
metoda Taylorovy řady byla porovnána s běžně používanými řešiči obyčejných diferenciálních
rovnic v systému MATLAB.

Klíčová slova: Metoda Taylorovy řady, obyčejné diferenciální rovnice, technické problémy,
Cauchyho úloha.
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