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Abstract: The aim of this paper is announce some recent results concerning the Hamiltonian
theory. The case of first order Hamiltonian systems related to an affine second order Euler—
Lagrange form is studied. In dimension 4 the structure of Hamiltonian systems (i.e., Lepagean
equivalent of an Euler-Lagrange form) is found.

Keywords: Euler—Lagrange form, Lepagean equivalent of Euler—Lagrange form, Hamiltonian
system.

1 Introduction

Throughout the paper all manifolds and mappings are smooth and summation convention
is used. We consider a fibered manifold (i.e., surjective submersion) 7 : ¥ — X, dim X = n,
dim Y = n + m, its r-jet prolongation m,. : J"Y — X, r > 1 and canonical jet projections
T o JY — J¥Y 0 < k < r (with an obvious notations J°Y = Y). A fibered chart on YV
(resp. associated fibered chart on J"Y') is denoted by (V, ¢), v = (2%, y7) (resp. (V,, ¥,),
1/)7" - (xia yg7 y?? s Jyzgl...ir))‘

A vector field £ on J"Y is called m.-vertical if it projects onto the zero vector field on X.
A g¢-form n on J"Y is called m,-horizontal if i¢n = 0 for every m,-vertical vector field £ on J"Y'.

The fibered structure of Y induces a morphism h, of exterior algebras, defined by the
condition J"y*n = J™ 1 ~y*hn for every section v of 7, and called horizontalization. Apparently,
horizontalization is an R-linear wedge product preserving mapping such that applied to a
function f and to the elements of the canonical basis of 1-forms (da’, dy?, dy?,...,dy?, ;) on
J"Y gives

hf=fomu,, hde' =da*, hdy” = yfda', ... hdy] , =y7 ;. da’.

A g-form n on J"Y is called contactif hn = 0. A contact g-form 7 on J"Y is called 1-contact
if for every m,-vertical vector field £ on J"Y the (¢ —1)-form in is horizontal. A contact q-form
non J'Y is called i-contact if for every m,-vertical vector field £ on J"Y the (¢ — 1)-form 4,7 is
(i-1)-contact.
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Recall that every g-form n on J"Y admits a unique (canonical) decomposition into a sum
of g-forms on J"*'Y as follows:

q
ﬂ-:—&—l,rn = hn + Zpkn7
k=1

where hn is a horizontal form, called the horizontal part of n, and ppn, 1 < k < q, is a k-contact

part of n (see [3]).
We use the following notations:

1 2 . .
wo =dx" Ndx® N ANd", Wi = iga2iWo, Wij = 19/929Ws,
and

w? =dy’ — ?J}dej> S wflig...z‘k = dyquig...ik - yZiz...@-kjdﬂf]

For more details on fibered manifolds and the corresponding geometric stuctures we refer
e.g. to [6].

In this section we briefly recall basic concepts on Lepagean equivalents of Euler-Lagrange
forms and generalized Hamiltonian field theory, due to Krupkova [4].

By an r-th order Lagrangian we shal mean a horizontal n-form A on J"Y.

A closed (n + 1)-form « is called a Lepagean equivalent of an Euler—Lagrange form E =
E,w® Awy if pra = E.

Recall that the Euler-Lagrange form corresponding to an r-th order A = Lwy is the following
(n + 1)-form of order < 2r

OL < OL
E=1—-—+) ( D'd,,d, oA )w A wo
(ay =1 o laypln-m

The family of Lepagean equivalents of E' is also called a Lagrangian system, and denoted
by [a]. A (single) Lepagean equivalent a of E on J*Y is also called a Hamiltonian system of
order s.

2 Hamiltonian Systems.

We shall consider dim X = 4 and a second order Euler-Lagrange form E = FE, w” A wy
which coefficients E, are affine in the second derivatives, i.e.,

E, = A, + By, (1)
where A, and B* do not depend on second derivatives.

In what follows, we shall study first order Hamiltonian systems (i.e., s = 1) corresponding to
a Lepagean equivalents of such Euler—Lagrange form. In dimension 4 the 1st order Hamiltonian
systems admit a decomposition

Ty 00 = D1 + pacv + psa + pax + psa,
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Keeping notations introduced so far, we write

a = E,w’ Awy+ Fl, w” Aw” Aw; + F2 w7 Aw! A w; (2)

+ FRPwf AW Awg 4+ GE, w7 AW AW Awy

+ GIF W AW AW A wip + GIIL W AW AW A wy
G W] A AW A+ K 0 AW AW AW A wigy
+ KON W AW AWT A W] A wi

+ KM G0 AW AW AW A wi

4 Kf}%gn w? Aw; Awj A Wiy A Wimn

KRN Wf AW AWE AW A Gy

+ MM, W AW AW AW A WT A wii

+ MINE W7 AW AWE AW A W] A Wikim

+ MIET W7 AW AWt AW AW] A Wkimn

+ M W7 AW AWE AW AW A Wi
M W A! NG A A G] A iy

n Miﬂ’ﬁ%”opq w? A w;-' AW A wlﬁ AW A Whopgs

Lemma 2.1. Let dim X = 4. Let E = E,w” A wy be a second order Euler—Lagrange
form with coefficients E, satisfying (1), and let o be a Hamiltonian system of the form (2).
Then the functions F;{/k? ngfl, G?j’lm; Kg];/klm; ngl'lklmn; ngl'/klmno’ Mcz'rjl'jklmn) Méj}'jklmno; Mcirjl'jklmnop}

M#Fmnora o not depend on E,.

Proof. Proof of the lemma follows from the explicit computation of da = 0. [J

One can see from the above lemma that the functions Fidk Gidkl - Gijkim = pgigkim = grijkimn,
K#Rmno - pijkimn - pijkimno - pijkimnop - ypiskimnops qg not depend on E, (cf. [4]). The invariant

choice is

ijk __ igkl __ yigklm ijklm __ ijklmn __ ijklmno __
Fm/ - GG’V - GO’I/ - Km/ - Km/ - Kcrz/ - O’

ijklmn __ ijklmno __ ijklmnop __ ijklmnopq __
M = M7 = M = M7 =0,
and we obtain new Hamiltonian system of the form

a = E,w’ Awy+ Fl, w” Aw” Aw; + F9 w7 Aw? A w; (3)
GY W AW’ Aw™ Aw; + GI¥

OVR OVRK wkoyAwawjk
K”Vkﬁﬁ W’ AW’ Aw® A WP Awijy, + K;]Vk,iﬁ W AW AWt AW A Wikl

(e

Méjfﬁlﬂ7 WA AW AW AW A Wijkl

o
MO’_JZ,K[T7 W’ AW’ AW A WP AWl A Wikim,

+ o+ o+ o+

where F!  are skew-symmetric in the indices ov, G%  are skew-symmetric in the indices ovk

and skew-symmetric in the ij, G¥% are skew-symmetric in the indices ov and skew-symmetric

OVK

in the jk, Kéj;,knﬁ are skew-symmetric in the indices ovkf and skew-symmetric in the ijk,
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- . - L . N
K5 are skew-symmetric in the indices ovr and skew-symmetric in the jki, M) ;. are skew-

symmetric in the indices ovkfy and skew-symmetric in the ijkl, M;Jjjg; are skew-symmetric
in the indices ok and skew-symmetric in the jkim.

Now the functions on the Hamiltonian system depend on coefficients of Euler-Lagrange
form. In the following theorem the stucture of the functions on the Hamiltonian system & (3)
is studied.

Theorem 2.2. Let dim X =4. Let £ = E,w” Awqy be a second order Fuler—Lagrange form
with coefficients E, satisfying (1), and let & be a Hamiltonian system of the form (3). Then
the following coeffient conditions are satisfied

1) Fi, = g%i,j; + f4,, where f2, are arbitrary functions satisfying (f2,)symi;) = 0 and f2,

do not depend on second derivatives.

9) Fi, = —4 (95 - ;Fi)

oyy

alt(ov) '

3) G?yn = % (%Fy%i - 83Fy;»§> () + ng];/mf where (g?;/n>alt(un) =0 and g?;/l{ do not depend on
i alt(vk

second derivatives.
ik 9FY
4) Gk, = (%)
) Gl O ) alt((ok) (ki)
second derivatives.

+ G where (905 )ai(ohy ) = 0 and gglj,. do not depend on

OVK

5) Kl =—% By _ oGl + k9 where (k79 ) =0 and k7%, do not
ovkfB T 12 ayﬁ ovkKf alt(ljliﬁ) - 0
alt(vkp)

g ovkf’ ovkKf

depend on second derivatives.

ijql Gy ijql : ij
6) KU]VqN’B - _% ( aylaﬂ> lt(vs), alt(( l)(ﬁ))‘f‘ ko?li}nﬁf where the fUﬂCtZOTLS (ko-jgnﬁ)alt(un), alt((al)(Bi)) =
alt(vk), alt((o 7

0 and kfffﬁﬁ do not depend on second derivatives.

ijk lijk

gkl 1 [ 9Ky 9K is, ijql . ijq _

7) MUV/@,B’y =55 < By Dy ( ))+ Mgy where the functions (maljnﬁ'y>alt(l’f€ﬁ’y)) =
alt(vefBy

0 and mijfnﬁ do not depend on second derivatives.

ijklq .
+ mg,.5., where functions

ikl _ 1 [ 9K
8) Mawcﬂ’y — 16 < Oyg ’
B alt(vkp), alt((oq)(vi))
(kgng)alt(wm’ alt((oq) (i) = 0 and mfjf}i%y do not depend on second derivatives.

Where sym() means the symmetrization in the indicated multiindices and alt() means skew-
symmetrization in the indicated multiindices.

Proof. Proof of the theorem follows from facts that the Hamiltonian systems is of first
order and from the explicit computation of dao = 0. [J

The Hamiltonian system (3) & admits noninvariant decomposition

a=ag+¢ (4)
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where ¢ does not depend on the Euler-Lagrange form and

0E, OE,
ap = FE,uw° /\wo——<@ djayiaj)wa/\wy/\wi (5)
v % e nuw A
w? Awi A w;j
3yfj J

1 (F — O°F TAW AW A
— w7 AW AW A Wy
7 oyY ayj "oy oy, 8yjk !

0’E )
+ ( w? AW’ Awi A wip
oYy, ayw alt((ok)(x))

1 ( O*Ep O*Ej

— - AW AW AW A Wi
144\ Oy dyy Oys (9y oy 3y]l>w WA AW A Wi

1 L AW NG AW A
: W AW A WA W; VAN Wikl
yy Oy oy alt((o1)(83))

. 1 64 Eu 4 (34E,,
2880 \ Oyy ooy oy! " OyyOypoyL oy,

w"/\w”Aw”/\wﬁAwVAwijkl

1 0*Ey
. m( ” ) W A AW AW A A i,
8ym8yl ayk ayw alt((om)(vi))

depends on derivatives of coefficients of the Euler-Lagrange form.

Proposition 2.3. Let dim X =4. Let E = FE, w” Awy be a second order Euler—Lagrange
form with coefficients E, satisfying (1), and let & be a Hamiltonian system (3) admitting the
decomposition & = ag + ¢, then ag is closed.

Proof. We have a = ag + ¢, da = 0 and ¢ does not depend upon E. For £ =0: ag = 0,
yielding d¢ = 0. Hence dag = da — d¢ = 0. This is completes the proof. [J

Conclusion

The differential geometry tools are very useful for application to Hamilton (field) theory.
The “geometrization” of Euler-Lagrange and Hamilton theory is used e.g. in [1] - [5], [7], [8].

The paper is generalization of classical Hamiltonian field theory on fibred manifold. The
regularization procedure and Lepagean equivalent of the first order Lagrangians was proposed
by Krupkova and Smetanova [5]. The concept of the Lepagean equivalent of the Euler-Lagrange
forms was given in [4]. In the paper the case of first order Hamiltonian systems related to an
affine second order Euler-Lagrange form is studied. In dimension 4 the structure of Hamiltonian
systems (i.e., Lepagean equivalent of an Euler-Lagrange form) is found.

-221 -



References

[1] D. R. Grigore and O. T. Popp, “On the Lagrange—Souriau form in classical field theory”,
Mathematica Bohemica, vol. 123, no. 1, 73-86, 1998.

[2] A. Hakovd and O. Krupkovd, “Variational first-order partial differential equations”, J. Dif-
ferential Equations, vol. 191, 67-89, 2006.

[3] D. Krupka, ¢ Some geometric aspects of variational problems in fibered manifolds”, Folia
Fac. Sci. Nat. UJEP Brunensis, vol. 14, 1-65, 1973.

[4] O. Krupkové, “Hamiltonian field theory”, J. Geom. Phys., vol. 43, 93-132, 2002.

[5] O. Krupkova and D. Smetanova, “Legendre transformation for regularizable Lagrangians in
field theory”, Letters in Math. Phys., vol. 58, 189-204, 2001.

[6] D.J. Saunders, The Geometry of Jet Bundles, London Math. Soc. Lecture Notes Series 142,
Cambridge Univ. Press, Cambridge, 1989

[7] D. Smetanova, “On second order Hamiltonian systems”, Archivum mathematicum, vol. 42
Supplement 341-347, 2006.

[8] D. Vey, “Multisymplectic formulation of vielbein gravity: 1. De Donder-Weyl formulation,
Hamiltonian (n — 1)-forms”, Classical and Quantum Gravity, vol. 32, Issue 9, 50 p., 2015.

HAMILTONOVY SYSTEMY V DIMENZI 4

Abstrakt: Clanek je vénovan Hamiltonovim systémim v dimenzi 4. Je zde studovan sys-
tém afinni Eulerovy-Lagrangeovy formy druhého tddu. V dimenzi 4 je nalezena struktura
Hamiltonovych systému (tj. Lepageovych ekvivalenti Eulerovy-Lagrangeovy formy).

Klicova slova: Eulerova—Lagrangeova forma, Lepagetiv ekvivalent Eulerovy—Lagrangeovy formy,
Hamiltontv systém.
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