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Abstract: Our work presents theory and numerical approaches suitable for the solutions of
straight plane beams rested on elastic foundations (i.e. nonlinear modified bilateral and uni-
lateral Winkler’s models). The nonlinear boundary value problems of 4th-order are solved via
finite element method with semi-smooth Newton’s method (which discretize the weak formu-
lation of the problem) and central difference method with classical Newton’s method (which
discretize directly the differential equation). Reaction forces in foundation are defined via
nonlinear dependencies based on previous experiments.
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1 Introduction

There are beams on elastic foundations which are frequently used in the engineering prac-
tice; for example see Fig. 1 and 2 and references [2], [3] and [4]. The first theory for the
bending of beams on an elastic foundation was proposed by E. Winkler in the Prague in 1867;
see [9]. The basic analysis of the bending of beams on an elastic foundation is based on the
first assumption that the strains (i.e. deformations) are small.

Figure 1: Examples of beams on elastic foundations (a) Railroads (b) Femoral screws in femur - rtg snapshot.
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In classical problems of engineering/mechanics, the deflection v = v(x) [m] of the straight
beam without any volume loads is described by linear/nonlinear differential equation

EJZT

d4v

dx4
+ qR = 0,

where E [Pa] is the modulus of elasticity of the beam, JZT =
∫

A
y2 dA [m4] is the major principal

second moment of the beam cross-section A [m2] and qR = qR(x, v, . . .) [Nm−1] corresponds to
the linear/nonlinear reaction of the foundation; see Fig. 2. The beam is loaded by force F [N].

Figure 2: (a) Dependence of reaction force on deflection (i.e. foundation load-settlement behaviour for a sand,
experiment and suitable linear and nonlinear approximations) (b) Beam with cross-section b × h and length 2L

is resting on elastic unilateral and bilateral foundation, see [2], [3], [6].

Our work focuses on the numerical approaches for the solution of straight plane (2D) beams
of length 2L on an elastic foundation with nonlinear unilateral or bilateral behaviour (linear
Bernouli’s beam, small deformations in the beam, Finite element Method, Central Difference
Method); see Fig. 2. The methodology of the elastic foundation measuring applied in this paper
is based on the pressing of a beam into the foundation; see Fig. 2, Tab. 1 and references [2], [3]
and [5]. Hence, in this article, the theory and numerical nonlinear approaches are explained.

Table 1: Elastic foundation - Experiments and their evaluation

Description: Expression; see Fig. 2 (a)

Experiments qRE
measurements (mean values)

Bilateral linear qR1
= k1v = 2.3587× 107v d4v

dx4 +
k1v

EJZT
= 0

Bilateral linear +
cubic

qR1,3
= k1v + k3v

3 = 1.094 × 107v +
4.2869× 1012v3

d4v
dx4 +

k1v+k3v3

EJZT
= 0

Bilateral linear +
cubic + quintic

qR1,3,5
= k1v + k3v

3 + k5v
5 = 8.8597 ×

106v+6.4373×1012v3−4.1846×1017v5
d4v
dx4 +

k1v+k3v3+k5v5

EJZT
= 0

Unilateral q|R1| =
k1

2
(v + |v|) = 2.3587×107

2
(v + |v|) d4v

dx4 +
k1

2EJZT
(v + |v|) = 0
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2 Finite Element Method (FEM) Approach to Unilateral Elastic Foundation

Let us suppose that the solved beam has symmetry. Therefore it is sufficient to solve the
differential equation for a half of the beam, i.e. x ∈ 〈0; L〉.

Hence, the deflection of the beam is described by the equation

EJZT

d4v

dx4
+ kv+ = 0 on x ∈ (0,L)

with following boundary conditions prescribed in points x = 0 and x = L

dv(x = 0)

dx
= 0, Mo(x = L) = 0,

T (x = 0) =
F

2
, T (x = L) = 0.

(1)

2.1 Weak Formulation and FEM

Lets denote V as the space of virtual displacements then V =
{

w ∈ H2 ((0,L)) : dw(x=0)
dx

= 0
}

.

The weak formulation of the beam defection on the unilateral foundation is following

find v ∈ V such that

EJZT

∫ L

0

d2v

dx2
d2w

dx2
dx+ k

∫ L

0

v+w dx =
F

2
w(0) is fulfilled for all w ∈ V.

(2)

For the sake of solvability of (2) the prescribed external force F must be positive. See (Sysala
2008) for details.

Lets divide the interval (0,L) into n parts of the same length. This equidistant discretization
with nodes x1 = 0, xi+1 = xi + h has the constant step h = L/n.

The discrete approximation of the space V is subspace Vh such that

Vh =

{

vh ∈ C1
(
(0,L)

)
: vh|〈xi,xi+1〉 ∈ P3,

dvh(0)

dx
= 0

}

.

The discrete form of (2) is following

find vh ∈ Vh such that

EJZT

∫ L

0

d2vh

dx2
d2ϕi

dx2
dx+ k

∫ L

0

v+h ϕi dx =
F

2
ϕi(0) for all i = 1, . . . , 2n+ 2,

(3)

where ϕi, i = 1, . . . 2n+ 2 are piecewise-cubic smooth functions, the base function of space Vh.
Because the solution vh of (3) is element of the space Vh, we can write

vh =
2n+2∑

i=1

uiϕi(x). (4)

And we will denote the vector u

u =
(

vh(x1)
︸ ︷︷ ︸

u1

,
dvh(x1)

dx
︸ ︷︷ ︸

u2=0

, vh(x2)
︸ ︷︷ ︸

u3

,
dvh(x2)

dx
︸ ︷︷ ︸

u4

, . . . , vh(xn+1)
︸ ︷︷ ︸

u2n+1

,
dvh(xn+1)

dx
︸ ︷︷ ︸

u2n+2

)⊤

.
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The algebraic FEM representation of the first integral in (3) and the right side of (3) can be set
by a standart way. The global stiffness matrix K and the global load vector f corresponding
to (3) are shown. (h = L/n constant).

K =
1

h3






















12 0 −12 6h 0 0 . . . 0 0 0 0
0 h3 0 0 0 0 . . . 0 0 0 0

−12 0 24 0 −12 6h . . . 0 0 0 0
6h 0 0 8h2 −6h 2h2 . . . 0 0 0 0

0 0 −12 −6h 24 0
. . . −12 6h 0 0

0 0 6h 2h2 0 8h2
. . . −6h 2h2 0 0

0 0 0 0 −12 −6h
. . . 24 0 −12 6h

0 0 0 0 6h 2h2
. . . 0 8h2 −6h 2h2

0 0 0 0 0 0 . . . −12 −6h 12 −6h
0 0 0 0 0 0 . . . 6h 2h2 −6h 4h2






















f =






















F
2

0
0
0
0
0
...
0
0
0
0






















2.2 Semi-Smooth Newton’s Method and Numerical Algorithm

We will present here one way how to find a numerical algorithm to the problem (3), which
was present in [7] for the case of the thin annular plate. Notice, there is the nonlinear expression

v+h = (vh(x))
+ =

1

2
(|vh(x)|+ vh(x)) =

1

2

(∣
∣
∣
∣
∣

2n+2∑

i=1

uiϕi(x)

∣
∣
∣
∣
∣
+
2n+2∑

i=1

uiϕi(x)

)

in the second integral on the left side of the equation. We deal with it in two steps.

The 1st step. We use the well-known trapezoidal rule1 for approximation of the integral
∫ L

0
v+h ϕi dx from the left side of the equation in (3). The main reason is that we get the

following approximation

∫ L

0

v+h ϕi dx ≈







1
2

h u+1 , if i = 1 ,

h u+i , if i is odd, i Ó= 1, i Ó= 2n+ 1 ,
1
2

h u+2n+1 , if i = 2n+ 1 ,

0 , if i is even,

which moves the non-linearity ( · )+ from the function vh from (4) to its finite element compo-
nents ui ∈ R and therefore the evaluation is easy in any numerical algorithm. Now we get the
homogenous equation

G(u) = 0 (5)

instead of (3) for the non-linear mapping

G(u) = EJZT Ku+ kBu+ − f , (6)

where the matrix K and the vector f are from the finite element method mentioned above and
the matrix B is diagonal, B = diag(h/2, 0, h, 0, h, 0 . . . , h, 0, h/2, 0).

1Exactly, we use the trapezoidal rule with the same grid as is used in the finite element method, see above.
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The 2nd step. Because we do not have available any derivative of (6) due to the absolute
value in u+, . For this reason, the second step to find the numerical algorithm is the usage
of more suitable semi-smooth Newton’s method, see [1], which introduces so called slanting
function Go and use it instead of Jacobian in the standard Newton’s iterations. We define

Go(u) = EJZT K + kBdiag(A(u+))

in our case, where the symbol (A(u+)) stands for the active set of indexes of such nods xi, in
which the elastic beam foundation is active. The resulting iterative equation in the (k + 1)-th
step of the semi-smooth Newton’s method is

u(k+1) = u(k) − Go
(

u(k)
)−1

G(u(k))

for known solution u(k) from the previous step. This iteration process converges for sufficiently
small distance between the initial estimate u(0) and the exact solution of the equation (5), for
details see [1].

There must be defined the suitable starting estimate u(0) in our computational algorithm.
We use the result deflection of the beam without any foundation. This deflection is solution of
equation (3) without the part with v+h .

The computational process of the algorithm is repeated until at least one termination
condition has been reached:

• either the solution u(k+1) satisfies the criteria of sufficiently small relative error

‖u(k+1) − u(k)‖

‖u(k)‖

• or the "exact" solution is reached at which the relative reziduum

‖Go(u(k+1))u(k+1) − f‖

(EJZT ‖K‖+ k ‖Bdiag
(

A
(

(uk+1)+
))

‖) ‖u(k+1)‖+ ‖f‖

vanishes.

3 Central Difference Method (CDM) Approach to Bilateral Elastic Foundation

According to the theory of CDM, the beam and its surroundings can be divided into n+5
nodes "i" with step ∆ = L

n
; see Fig. 3.

Central differences (CD) at the point "i" can be defined as an approximation of derivatives
v(i) = div

dxi . Hence,

v(1) ≈
vi+1 − vi−1

2∆
, v(2) ≈

vi+1 − 2vi + vi−1

∆2
,

v(3) ≈
vi+2 − 2vi+1 + 2vi−1 − vi−2

2∆3
, v(4) ≈

vi+2 − 4vi+1 + 6vi − 4vi−1 + vi−2

∆4
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Figure 3: Beam of length 2L resting on an elastic foundation and loaded by force F and divisions of the beam
(CDM – one half of the beam).

For example, differential equation

EJZT

d4v

dx4
+ k1v + k3v

3 + k5v
5 = 0

can be approximated via CD as

vi−2 − 4vi−1 + (6 + a1)vi − 4vi+1 + vi+2 + a3v
3
i + a5v

5
i = 0 for i = 0, 1, 2, . . . , n,

where a1 =
k1∆4

EJZT
, a3 =

k3∆4

EJZT
, a5 =

k5∆4

EJZT
, c = 6+ a1 and b = F∆3

EJZT
. The variables v−2, v−1, vn+1

and vn+2 (i.e. connection with fictitious nodes) can be expressed from boundary conditions.
Hence, v−1 = v1, v−2 = v2 − b, vn+1 = 2vn − vn−1 and vn+2 = 4vn − 4vn−1 + vn−2. For more
information see [2], [3], [8] and [6] . This leads to a system of n+ 1 nonlinear equations

Mv + a3v
3 + a5v

5 − b = o, (7)

where

M =































c −8 2 0 0 0 0 · · · 0
−4 7 + a1 −4 1 0 0 0 · · · 0
1 −4 c −4 1 0 0 · · · 0
0 1 −4 c −4 1 0 · · · 0
...

...
...

...
. . .

...
... · · · 0

0 · · · 0 1 −4 c −4 1 0
0 · · · 0 0 1 −4 c −4 1
0 · · · 0 0 0 1 −4 5 + a1 −2
0 · · · 0 0 0 0 2 −4 2 + a1































,

b =











b
0
...
0











, v =











v0
v1
...

vn











, v3 =











v30
v31
...

v3n











, v5 =











v50
v51
...

v5n











.
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The nonlinear equation (7) is solved by well-known Newton’s method (also known as the New-
ton–Raphson method) with the following termination condition

‖v(k+1) − v(k)‖ < εtol ,

which means that the distance of two last iteration solutions v(k+1) and v(k) is sufficiently small.

Conclusion

There is considered the boundary value problems describing the deflection of the straight
beam rested on two classes of nonlinear elastic foundations in our paper. The definitions of the
reaction forces in the foundations are based on previous experiments described in the previous
papers listed in the references. The first class is case of beam on unilateral foundation. We have
described the derivation of the finite element method formulation of the problem and then we
have suggested the computational algorithm via semi-smooth Newton’s method. On the other
hand we have used the central difference method in the case of bilateral foundations, which is
the second class of nonlinear elastic foundations. And we use the classical Newton’s method to
solve the resulting equation. Both approaches lead to computational algorithms through which
we are able to get the numerical solutions which are comparable with analytical solutions with
good results.
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Numerické řešení ohybu nosníku v nelineárním
prostředí - část 1 (teorie)

Abstrakt: V článku se zabýváme numerickým řešením úlohy, která popisuje ohyb rovinného
nosníku uloženého v různých typech elastického prostředí (t.j. nelineární modifikované bi-
laterální a unilaterální Winklerova typu). Jsou popsány dva způsoby řešení okrajové úlohy
s nelineární diferenciální rovnicí čtvrtého řádu. První je pomocí metody konečných prvků s
využitím nehladké Newtonovy metody a druhý je založený na metodě centrálních diferencí a
použití klasické Newtonovy metody. Reakční síly v podloží jsou definovány nelineárními zo-
brazeními, jejichž tvar vychází z předchozích experimentů.

Klíčová slova: jednostranné a oboustranné elastické podloží, nelineární podloží, nosník,
metoda konečných prvků, nehladká Newtonova metoda, metoda konečných diferencí.
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