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Abstract: Examples of globally variational source forms (differential equations) defined on
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of the underlying space follows from the variational sequence theory on fibered manifolds,
which guarantees global variationality over topological spaces with trivial the second de Rham
cohomology group.

Keywords: Möbius strip, Helmholtz conditions, Vainberg–Tonti Lagrangian, variational se-
quence, global variationality.

1 Introduction

In this paper we study simple examples of variational differential forms on the open Möbius
strip, a representative of smooth manifolds possessing trivial the second de Rham cohomology
group. This topological property of the underlying space assures that locally variational forms
are automatically globally variational, which is the important result of the variational sequence
theory over fibered manifolds, the main tool for study the local and global properties of the
Euler-Lagrange mapping in the calculus of variations (cf. Krupka [5,7], Takens [11], Urban and
Krupka [14], Volná and Urban [16]). Although the existence of a global variational principle
is guaranteed by the theory, there is no general construction of a global Lagrangian for given
differential equations (source forms), defined on this class of underlying manifolds. In the
concrete examples, we applied the Vainberg–Tonti construction and obtained the corresponding
globally defined Lagrange functions. Nevertheless, the general theory requires further research.

Basic concepts of the geometric theory of second-order variational differential equations are
recalled in a slightly simplified setting. For the general theory of global variational principles
on fibered manifolds we refer to Krupka [7], and references therein; see also Anderson and
Duchamp [1], Brajerčík and Krupka [2], Krupka, Urban, and Volná [8], Krupková and Prince [9].

Throughout, Y denotes a fibered manifold with base X and projection π. The r-jet pro-
longation of Y is denoted by JrY , and πr : JrY → X, πr,0 : JrY → Y are the canonical jet
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projections. For an open subset W ⊂ Y , we put W r = (πr,0)
−1
(W ). The ring of functions

on W r is denoted by Ωr
0W , and the Ωr

0W -module of differential k-forms on W r is denoted by
Ωr

kW . Mr,a denotes the open Möbius strip (that is, without boundary) of radius r and width
2a, where 0 < a < r.

2 Variational equations and the Vainberg–Tonti Lagrangian

Let W be an open subset of a fibered manifold Y over 1-dimensional base X ("fibered
mechanics"). Consider a source form ε ∈ Ω2

2,Y W (also called a dynamical form in Lagrangian
mechanics), which is by definition a 1-contact, π2,0-horizontal 2-form, defined on an open subset
W 2 ⊂ J2Y . In a fibered chart (V, ψ), ψ = (t, xi), ε is expressed by

ε = εiω
i ∧ dt, (2.1)

where
ωi = dxi − ẋidt (2.2)

are contact 1-forms on V 1, and the coefficients εi = εi(t, xj, ẋj, ẍj) are real-valued functions on
V 2. Every Lagrangian λ ∈ Ω1

1,XW , by definition a π1-horizontal 1-form on W 1 ⊂ J1Y , induces
a source form Eλ, expressed in a fibered chart (V, ψ), ψ = (t, xi), by

Eλ = Ei(L)ω
i ∧ dt,

where λ = Ldt, and

Ei(L) =
∂L

∂xi
− d

dt

∂L

∂ẋi
=

∂L

∂xi
− ∂2L

∂t∂ẋi
− ∂2L

∂xj∂ẋi
ẋj − ∂2L

∂ẋj∂ẋi
ẍj

are the Euler–Lagrange expressions associated to L.
ε is called locally variational, if there is a family of Lagrangians (λι)ι∈I , λι ∈ Ω1

1,XVι, defined
on an open covering (Vι)ι∈I of Y such that

ε|Vι
= Eλι

. (2.3)

In a fibered chart (V, ψ), ψ = (t, xi), a Lagrangian has an expression λ = Ldt, and condition
(2.3) means that the coefficients εi of ε coincide with the Euler–Lagrange expressions of a
Lagrange function L = L(t, xj, ẋj), that is

εi = Ei(L).

ε is called globally variational (or simply variational), if there exists a Lagrangian λ ∈ Ω1
1,XW

such that ε = Eλ.

Remark 1. Clearly, this concept of (local) variationality transfers to systems of m second-order
ordinary differential equations. In a chart (V, ψ), ψ = (t, xi), we have a system

εi(t, xj, ẋj, ẍj) = 0, (2.4)

where i, j = 1, 2, . . . , m (the number of equations and dependent variables are equal). Solutions
of (2.4) are differentiable mappings γ defined on an open interval in R with values in R

m, ζ(t) =
(x1ζ(t), x2ζ(t), . . . , xmζ(t)), which satisfy (2.4). System (2.4) is called locally variational, if (2.4)
coincides with the Euler–Lagrange equations for some Lagrange functions L = L(t, xj, ẋj).
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Remark 2. For the purpose of this paper, we shall work with a Cartesian product Y = R × M
fibered over R (endowed with a canonical global coordinate), where M is a submanifold of
a Euclidean space, the Möbius strip. In case of this trivial fibration, the notion of globally
variational source form reduces to existence of a globally defined Lagrange function on the
corresponding underlying set.

The following theorem describes necessary and sufficient conditions for ε (2.1) to be locally
variational.

Theorem 3 (Helmholtz conditions). Let (V, ψ), ψ = (t, xi), be a fibered chart on W ⊂ Y ,
and ε ∈ Ω2

2,Y W be a source form with the expression (2.1). The following two conditions are
equivalent:

(a) ε is locally variational.
(b) The functions εi satisfy the system

∂εi

∂ẍj
− ∂εj

∂ẍi
= 0, (2.5)

∂εi

∂ẋj
+

∂εj

∂ẋi
− d

dt

(

∂εi

∂ẍj
+

∂εj

∂ẍi

)

= 0, (2.6)

∂εi

∂xj
− ∂εj

∂xi
− 1

2

d

dt

(

∂εi

∂ẋj
− ∂εj

∂ẋi

)

= 0. (2.7)

Proof. The Helmholtz conditions (2.5)–(2.7) were obtained by von Helmholtz [13]; for the proof
see e.g. Havas [3]. Generalized conditions for higher-order partial differential equations can be
found in Krupka [4].

Remark 4. It is straightforward that conditions (2.5) and (2.6) imply linearity of εi in the
second derivatives, i.e. εi = Ai + Bijẍ

j, and the property Bij = ∂Ci/∂ẋj = ∂Cj/∂ẋi = Bji

for some functions Ci = Ci (t, xj, ẋj). Hence the Helmholtz conditions (2.5)–(2.7) for εi can be
equivalently reformulated for first-order functions Ai, Bij (cf. Sarlet [10]).

Another standard result is a construction of a Lagrangian for locally variational source
form.

Theorem 5 (Vainberg–Tonti). Let (V, ψ), ψ = (t, xi), be a fibered chart on W ⊂ Y such that

ψ(V ) is star-shaped, and ε ∈ Ω2
2,Y W be a source form with the expression (2.1). If ε is locally

variational, then ε|V = Eλ, where λ ∈ Ω2
1,XV , λ = Ldt, and

L
(

t, xi, ẋi, ẍi
)

= xi

∫ 1

0

εi

(

t, sxi, sẋi, sẍi
)

ds. (2.8)

Proof. We refer to Tonti [12]; see also Krupka [6].

Remark 6. Note that in the context of Theorem 5, the Vainberg–Tonti Lagrangian λ ∈ Ω2
1,XV ,

given by (2.8), can always be reduced to a first-order Lagrangian by means of deleting some
total derivative terms.
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3 Variational sequence theory in fibered mechanics

We now very briefly recall a sheaf-theoretic concept in the variational calculus on fibered
manifolds, the variational sequence theory and its consequences for global variationality; our
main reference is Krupka [5], see also Urban and Krupka [14]. The construction can be described
rather simply: the de Rham sequence of differential forms on the corresponding underlying
manifold is factored through its contact subsequence. It turns out, in particular, that one of
the quotient morphisms coincides with the Euler-Lagrange mapping, assigning to a Lagrangian
its Euler–Lagrange form. The quotient sheaf sequence, the variational sequence, then can be
used to study the local and global properties of the Euler-Lagrange mapping. We have the
commutative diagram

0 0 0

Ωr
1/Θ

r
1

✻

✲ Ωr
2/Θ

r
2

✻

✲ Ωr
3/Θ

r
3

✻

✲ · · ·

0 ✲ R ✲ Ωr
0

✲

✲

Ωr
1

✻

✲ Ωr
2

✻

✲ Ωr
3

✻

✲ · · ·

0

✻

✲ Θr
1

✻

✲ Θr
2

✻

✲ Θr
3

✻

✲ . . .

0

✻

0

✻

0

✻

Theorem 7. The variational sequence of order r over Y is an acyclic resolution of the constant

sheaf RY over Y .

Proof. See Krupka [5].

From Theorem 7 and the well-known Abstract de Rham theorem (cf. Wells [17]), we get
the next result.

Corollary 8. The cohomology of the complex of global sections of the variational sequence and
the de Rham cohomology of Y coincide,

Hk (ΓVrY ) = Hk
deRY, k ≥ 0.

The following assertion follows from Corollary 8 and properties of the variational sequence.

Corollary 9. Suppose ε be a source form on JrY . If ε is locally variational and the de Rham
cohomology group H2

deRY is trivial, then ε is globally variational.

4 Smooth atlas adapted to fibered Möbius strip

For the main purpose of this work, the study of examples of globally variational forms on
the Möbius strip, we give its smooth manifold structure. Consider the open subset

W = R × {R3\{(0, 0, z)}}
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in the Euclidean space R4, endowed with its open submanifold structure. The global Cartesian
coordinates on W are denoted by (t, x, y, z). We introduce an atlas on W adapted to the fibered
Möbius strip R × Mr,a as follows. Let V and V̄ be an open covering of W , where

V = R × R
3\ ((−∞, 0]× {0} × R) , V̄ = R × R

3\ ([0, ∞)× {0} × R) ,

and define coordinate functions (t, ϕ, τ, κ) on V by t = t,

ϕ = atan2(y, x),

τ =
1√
2

(

√

x2 + y2 − r
)

√

1 +
x

√

x2 + y2
+

1√
2
sgn (y) z

√

1− x
√

x2 + y2
,

κ = − 1√
2

(

√

x2 + y2 − r
)

sgn (y)

√

1− x
√

x2 + y2
+

1√
2

z

√

1 +
x

√

x2 + y2
,

and (t̄, ϕ̄, τ̄ , κ̄) on V̄ by t̄ = t, τ̄ = −τ , κ̄ = −κ, and

ϕ̄ =

{

atan2(y, x), y ≥ 0,

atan2(y, x) + 2π, y < 0,

where atan2(y, x) is the arctangent function with two arguments.
It is easy to check that the pairs (V,Ψ), Ψ = (t, ϕ, τ, κ), and (V̄ , Ψ̄), Ψ̄ = (t̄, ϕ̄, τ̄ , κ̄), are

charts on W adapted to R×Mr,a, which form a smooth atlas on W (see Urban and Volná [15]).
On the intersection V ∩ V̄ = R×R

3 \ (R × {0} × R), the chart transformations between (V,Ψ)
and (V̄ , Ψ̄) are expressed by

Ψ ◦ Ψ̄−1 : Ψ̄(V̄ )\{ϕ̄ = π} → Ψ(V )\{ϕ = 0},

Ψ ◦ Ψ̄−1(t̄, ϕ̄, τ̄ , κ̄) =

{

(t̄, ϕ̄, τ̄ , κ̄), ϕ̄ ∈ (0, π),

(t̄, ϕ̄ − 2π, −τ̄ , −κ̄), ϕ̄ ∈ (π, 2π),
(4.1)

and
Ψ̄ ◦Ψ−1 : Ψ(V )\{ϕ = 0} → Ψ̄(V̄ )\{ϕ̄ = π},

Ψ̄ ◦Ψ−1(t, ϕ, τ, κ) =

{

(t, ϕ, τ, κ), ϕ ∈ (0, π),

(t, ϕ+ 2π, −τ, −κ), ϕ ∈ (−π, 0).
(4.2)

Note that in the chart (V,Ψ) (resp. (V̄ , Ψ̄)), R × Mr,a has the equation κ = 0 with
−a < τ < a (resp. κ̄ = 0 with −a < τ̄ < a). The associated smooth atlas on R × Mr,a is
defined by the charts (V ∩ (R × Mr,a) ,Ψ|V ∩(R×Mr,a)) and (V̄ ∩ (R × Mr,a) , Ψ̄|V̄ ∩(R×Mr,a)), and
we denote the associated coordinates by the same letters as Ψ = (t, ϕ, τ) and Ψ̄ = (t̄, ϕ̄, τ̄), if
no misunderstanding may arise.

5 Globally variational forms: Examples

We now apply the variational sequence theory over fibered manifold Y = R × Mr,a. Since

H2
deRMr,a = 0, (5.1)
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Corollary 9 implies that every locally variational source form ε on J2 (R × Mr,a) is also globally
variational. In order words, condition (5.1) assures existence of a Lagrange function defined
on J1 (R × Mr,a), for which the corresponding Euler–Lagrange expressions coincide with ε (cf.
Remark 2). We give examples of source forms on J2 (R × Mr,a), illustrating this sheaf-theoretic
result.

5.1 The kinetic Lagrangian

Consider the canonical embedding ι : R × Mr,a → R × R
3 and its jet prolongations Jrι :

Jr (R × Mr,a) → Jr (R × R
3). Denote by (t, x, y, z) the canonical coordinates on R × R

3, and
by (t, x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈) the associated coordinates on J2 (R × R

3). The source form

ε = εxωx ∧ dt+ εyωy ∧ dt+ εzωz ∧ dt,

where ωx, ωy, and ωz are contact 1-forms (2.2), and εx = −ẍ, εy = −ÿ, εz = −z̈, is variational
and possesses a global Lagrangian, the kinetic energy Lagrangian λ = Lkindt on J1 (R × R

3),
where

Lkin =
1

2

(

ẋ2 + ẏ2 + ż2
)

. (5.2)

The induced source form J2ι∗ε on J2 (R × Mr,a) is globally variational. Indeed, if J2ι∗ε is
expressed in the chart (V,Ψ), Ψ = (t, ϕ, τ, κ), as introduced in Sec. 4, we have J2ι∗ε|V =
εϕωϕ ∧ dt+ ετ ωτ ∧ dt, where

εϕ =
1

2
ϕ̇2τ sin

ϕ

2

(

r + τ cos
ϕ

2

)

− 1

2
ϕ̇τ̇

(

4 cos
ϕ

2

(

r + τ cos
ϕ

2

)

+ τ
)

−
(

(

r + τ cos
ϕ

2

)2

+
τ 2

4

)

ϕ̈,

ετ =
1

4
ϕ̇2

(

4 cos
ϕ

2

(

r + τ cos
ϕ

2

)

+ τ
)

− τ̈ .

The Vainberg–Tonti Lagrangian (2.8) associated with J2ι∗ε|V is of second order, and it can
be reduced to the first-order Lagrangian, which coincides with J1ι∗λ = (Lkin ◦ J1ι) dt on
J1 (R × Mr,a), where

Lkin ◦ J1ι (ϕ, τ, ϕ̇, τ̇) =
1

2

(

τ̇ 2 +

(

(

r + τ cos
ϕ

2

)2

+
τ 2

4

)

ϕ̇2

)

. (5.3)

Using the chart transformations (4.1), (4.2), it is also easy to verify that formula (5.3) defines
a global function on J1 (R × Mr,a).

5.2 The Vainberg–Tonti Lagrangian need not be global

We give another simple example of a globally defined source form ε on J1 (R × Mr,a), which
is locally hence also globally variational. But contrary to the previous example, it shows that
the direct use of the Vainberg–Tonti construction does not lead to the global Lagrangian.

Let ε be a source form defined on J1 (R × Mr,a) such that

ε|V = εϕηϕ ∧ dt+ ετ ητ ∧ dt, ε|V̄ = εϕ̄ηϕ̄ ∧ dt̄+ ετ̄ ητ̄ ∧ dt̄,

where εϕ = 1 = εϕ̄, ετ = 0 = ετ̄ , and ηϕ = dϕ − ϕ̇dt, ητ = dτ − τ̇ dt, ηϕ̄ = dϕ̄ − ˙̄ϕdt,
ητ̄ = dτ̄ − ˙̄τdt. Clearly, ε is locally variational (cf. Theorem 3). The Vainberg–Tonti Lagrangian
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(2.8) associated with ε|V , resp. ε|V̄ , reads L = ϕ, ϕ ∈ (−π, π), resp. L̄ = ϕ̄, ϕ̄ ∈ (0, 2π).
These local Lagrange functions, however, do not define a global Lagrange function for given ε.
Nevertheless, ε is globally variational, and it possesses a global Lagrange function, defined by

L (t, ϕ, ϕ̇) =

{

ϕ+ π (1 + cosϕ)− πtϕ̇ sinϕ, ϕ ∈ (0, π),

ϕ+ 2π, ϕ ∈ (−π, 0],

and

L̄
(

t̄, ϕ̄, ˙̄ϕ
)

=

{

ϕ̄+ π (1 + cos ϕ̄)− πt̄ ˙̄ϕ sin ϕ̄, ϕ̄ ∈ (0, π),

ϕ̄, ϕ̄ ∈ [π, 2π).

Clearly, L̄ ◦ Ψ̄ ◦Ψ−1 = L on V ∩ V̄ .
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Globálně variační formy na Möbiově pásce:

Příklady

Abstrakt: S využitím Vainberg–Tontiho konstrukce jsou studovány příklady globálně vari-
ačních zdrojových forem (diferenciálních rovnic) na otevřené Möbiově pásce. Podkladová vari-
eta byla zvolena s ohledem na teorii variační posloupnosti, která zaručuje globální variačnost
na topologických prostorech s triviální druhou de Rhamovou kohomologickou grupou.

Klíčová slova: Möbiova páska, Helmholtzovy podmínky, Vainberg–Tonti lagrangián,variační
posloupnost, globální variačnost.
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