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Abstract: Examples of globally variational source forms (differential equations) defined on
the open Mobius strip are studied by means of the Vainberg-Tonti construction. Our choice
of the underlying space follows from the variational sequence theory on fibered manifolds,
which guarantees global variationality over topological spaces with trivial the second de Rham
cohomology group.
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1 Introduction

In this paper we study simple examples of variational differential forms on the open Mébius
strip, a representative of smooth manifolds possessing trivial the second de Rham cohomology
group. This topological property of the underlying space assures that locally variational forms
are automatically globally variational, which is the important result of the variational sequence
theory over fibered manifolds, the main tool for study the local and global properties of the
Euler-Lagrange mapping in the calculus of variations (cf. Krupka [5,7], Takens [11], Urban and
Krupka [14], Volna and Urban [16]). Although the existence of a global variational principle
is guaranteed by the theory, there is no general construction of a global Lagrangian for given
differential equations (source forms), defined on this class of underlying manifolds. In the
concrete examples, we applied the Vainberg—Tonti construction and obtained the corresponding
globally defined Lagrange functions. Nevertheless, the general theory requires further research.

Basic concepts of the geometric theory of second-order variational differential equations are
recalled in a slightly simplified setting. For the general theory of global variational principles
on fibered manifolds we refer to Krupka [7], and references therein; see also Anderson and
Duchamp [1], Brajerc¢ik and Krupka [2], Krupka, Urban, and Volna [8], Krupkova and Prince [9].

Throughout, Y denotes a fibered manifold with base X and projection 7. The r-jet pro-
longation of Y is denoted by J'Y, and 7" : J'Y — X, 7™ : J'Y — Y are the canonical jet
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projections. For an open subset W C Y, we put W™ = (77°)" (W). The ring of functions
on W7 is denoted by €gW, and the QgI¥/-module of differential k-forms on W is denoted by
O W. M,, denotes the open Mobius strip (that is, without boundary) of radius r and width
2a, where 0 < a < 7.

2 Variational equations and the Vainberg-Tonti Lagrangian

Let W be an open subset of a fibered manifold Y over 1-dimensional base X ("fibered
mechanics"). Consider a source form e € Q%}YW (also called a dynamical form in Lagrangian
mechanics), which is by definition a 1-contact, 7*%-horizontal 2-form, defined on an open subset
W2 C J?Y. In a fibered chart (V,4), v = (t,2"), € is expressed by

e =cgw Adt, (2.1)
where . ' '
w'=dz’ — i'dt (2.2)

are contact 1-forms on V!, and the coefficients e; = &;(t, 27, 47, #7) are real-valued functions on
V2. Every Lagrangian A € Qj xW, by definition a m'-horizontal 1-form on W' C J'Y, induces
a source form E), expressed in a fibered chart (V,4), ¢ = (¢, z°), by

E)\ == é"Z(L)wz VAN dt,
where A = Ldt, and
oL doL 0L 0*L PL 0?L

ox* dtoit Ox*  Otdit  0xI0it 011 0"
are the Fuler—Lagrange expressions associated to L.
e is called locally variational, if there is a family of Lagrangians (A,)
on an open covering (V;),.; of Y such that

&(L)
A € O V., defined

el

3

v = By, (2.3)

In a fibered chart (V,1), ¥ = (¢,z"), a Lagrangian has an expression A\ = Ldt, and condition
(2.3) means that the coefficients ¢; of & coincide with the Euler-Lagrange expressions of a
Lagrange function L = L(t,27,7), that is

g; = &;(L).

e is called globally variational (or simply variational), if there exists a Lagrangian \ € QiXW
such that e = F,.

Remark 1. Clearly, this concept of (local) variationality transfers to systems of m second-order
ordinary differential equations. In a chart (V, 1), ¥ = (¢,z"), we have a system

gi(t, 7,17, 57) = 0, (2.4)

where i, j = 1,2,...,m (the number of equations and dependent variables are equal). Solutions
of (2.4) are differentiable mappings v defined on an open interval in R with values in R™, {(¢) =
(x1¢(t), 22¢(t), ..., 2™((t)), which satisfy (2.4). System (2.4) is called locally variational, if (2.4)
coincides with the Euler-Lagrange equations for some Lagrange functions L = L(t, 27, i7).
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Remark 2. For the purpose of this paper, we shall work with a Cartesian product Y =R x M
fibered over R (endowed with a canonical global coordinate), where M is a submanifold of
a Euclidean space, the Mdbius strip. In case of this trivial fibration, the notion of globally
variational source form reduces to existence of a globally defined Lagrange function on the
corresponding underlying set.

The following theorem describes necessary and sufficient conditions for € (2.1) to be locally
variational.

Theorem 3 (Helmholtz conditions). Let (V,1), 1 = (t,z%), be a fibered chart on W C Y,
and € € Q%YW be a source form with the expression (2.1). The following two conditions are
equivalent:

(a) € is locally variational.

(b) The functions e; satisfy the system

661‘ an o

o1~ or (25)
661‘ 86]' d 8&' 0sj o

o 0 di (ajj * a:'c'z) =0 (2:6)

= 0. (2.7)

(%i 8€j 1d (851 Bej)

Oxi  Oxi 24t \oid  Oit

Proof. The Helmholtz conditions (2.5)—(2.7) were obtained by von Helmholtz [13]; for the proof
see e.g. Havas [3]. Generalized conditions for higher-order partial differential equations can be
found in Krupka [4]. O

Remark 4. 1t is straightforward that conditions (2.5) and (2.6) imply linearity of ¢; in the
second derivatives, i.e. ¢; = A; + B;;#’, and the property B;; = 0C;/0i7 = 0C;/0i' = By,
for some functions C; = C; (t,27,47). Hence the Helmholtz conditions (2.5)(2.7) for &; can be
equivalently reformulated for first-order functions A;, B;; (cf. Sarlet [10]).

Another standard result is a construction of a Lagrangian for locally variational source
form.

Theorem 5 (Vainberg-Tonti). Let (V,v), ¥ = (t,2"), be a fibered chart on W C Y such that
(V) is star-shaped, and € € Q;YW be a source form with the expression (2.1). If € is locally
variational, then ely = Ex, where X € OF 'V, X = Ldt, and

1
L (t, xi,:ki,jii) = :1:1/ £ (t, sx', si', sx’) ds. (2.8)
0

Proof. We refer to Tonti [12]; see also Krupka [6]. O

Remark 6. Note that in the context of Theorem 5, the Vainberg—Tonti Lagrangian \ € QiXV,
given by (2.8), can always be reduced to a first-order Lagrangian by means of deleting some
total derivative terms.
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3 Variational sequence theory in fibered mechanics

We now very briefly recall a sheaf-theoretic concept in the variational calculus on fibered
manifolds, the variational sequence theory and its consequences for global variationality; our
main reference is Krupka [5], see also Urban and Krupka [14]. The construction can be described
rather simply: the de Rham sequence of differential forms on the corresponding underlying
manifold is factored through its contact subsequence. It turns out, in particular, that one of
the quotient morphisms coincides with the Euler-Lagrange mapping, assigning to a Lagrangian
its Euler—Lagrange form. The quotient sheaf sequence, the variational sequence, then can be
used to study the local and global properties of the Euler-Lagrange mapping. We have the
commutative diagram

0 R N o) oy Q;
0 o7 o} o}
0 0 0

Theorem 7. The variational sequence of order r overY is an acyclic resolution of the constant
sheaf Ry over'Y .

Proof. See Krupka [5]. O

From Theorem 7 and the well-known Abstract de Rham theorem (cf. Wells [17]), we get
the next result.

Corollary 8. The cohomology of the complex of global sections of the variational sequence and
the de Rham cohomology of Y coincide,

HY(TV'Y) = HE LY, k>0.
The following assertion follows from Corollary 8 and properties of the variational sequence.

Corollary 9. Suppose € be a source form on J'Y . If € is locally variational and the de Rham
cohomology group H3 Y is trivial, then € is globally variational.

4 Smooth atlas adapted to fibered Mobius strip

For the main purpose of this work, the study of examples of globally variational forms on
the Mobius strip, we give its smooth manifold structure. Consider the open subset

W =R x {R*\{(0,0,2)}}
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in the Euclidean space R*, endowed with its open submanifold structure. The global Cartesian
coordinates on W are denoted by (t, z, vy, 2). We introduce an atlas on 1V adapted to the fibered
Mbobius strip R x M, , as follows. Let V' and V' be an open covering of W, where

V =R x R* ((—00,0] x {0} xR), V =R xR ([0,00) x {0} x R),
and define coordinate functions (¢, ¢, 7,k) on V by t = t,

o = atan2(y, z),

1 ( 2 1 x
e 1+ — L
\/§ v \/:p2+y 2 \/ Vv +y?

(V:U?%—y —r)sgn ———i—iz R

R = —

NG

and (t,¢,7,K)on V byt =t, 7 = —7, k = —k, and

- atan?(y, iL’), y = 07
| atan2(y, z) + 27, y <O,

where atan2(y, x) is the arctangent function with two arguments.

It is easy to check that the pairs (V, W), U = (t,¢,7, %), and (V, V), ¥ = (¢, ¢, 7, k), are
charts on W adapted to R x M, ,, which form a smooth atlas on W (see Urban and Volna [15]).
On the intersection VNV =R xR?\ (R x {0} x R), the chart transformations between (V, ¥)
and (V, W) are expressed by

Vo U U(V)\{p =} = T(V)\{p =0},

t, @, 7, k), P € (0,m),
E@ 2m _7_—7_’%)7 §5€<7727T)7

\_/

(4.1)

and

o U™ U(V)\{p =0} » U(V)\{p =},

\I/O \I/_l(t ©,T Ii) _ (t7 @ T, K)? ¥ € (077‘-)7 (4 2)
T (t,QO‘i‘ 27T7 -7, _K)7 2 € (_7T70>‘ '

Note that in the chart (V,¥) (resp. (V,¥)), R x M,, has the equation x = 0 with
—a < 7 < a (resp. k=0 with —a < 7 < a). The associated smooth atlas on R x M, , is
defined by the charts (V N (R x M,.), V|yamxa,,)) and (VN (R x M,,), \I/|Vﬂ(RxMT’a)), and

we denote the associated coordinates by the same letters as ¥ = (¢, ,7) and ¥ = (£, p, 7), if
no misunderstanding may arise.

5 Globally variational forms: Examples

We now apply the variational sequence theory over fibered manifold ¥ = R x M, ,. Since

HseRMT,a = 07 (51)
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Corollary 9 implies that every locally variational source form € on J? (R x M,,) is also globally
variational. In order words, condition (5.1) assures existence of a Lagrange function defined
on J' (R x M,,), for which the corresponding Euler-Lagrange expressions coincide with € (cf.
Remark 2). We give examples of source forms on J? (R x M, ,), illustrating this sheaf-theoretic
result.

5.1 The kinetic Lagrangian

Consider the canonical embedding ¢ : R x M, , — R x R?® and its jet prolongations J"¢ :
J (R x M,,) — J" (R x R?). Denote by (¢,,y,z) the canonical coordinates on R x R* and
by (t,z,y,2,%,7, %, 7,9, #) the associated coordinates on J* (R x R?). The source form

€ =W ANdt + eyw? Ndt 4 e,w* A dt,

where w”, w¥, and w?® are contact 1-forms (2.2), and ¢, = —%, ¢, = —, €, = —Z, is variational
and possesses a global Lagrangian, the kinetic energy Lagrangian X = Lyy,dt on J' (R x R3),
where

1
Liin = 3 (&% + 97 + 7). (5.2)

The induced source form J%*c on J* (R x M,,) is globally variational. Indeed, if J%/*¢ is
expressed in the chart (V,¥), U = (t,¢,7, k), as introduced in Sec. 4, we have J?/*e|y =
Eew? N dl + ;W™ A dt, where

Loy @ ¥ L. ¥ ¥

— _ I ) - = 4 _< _) >

€p 2@ TSlH2 (7’+TCOS2) 2@7 ( COS2 7"—|—TC082 + T
2

< n ¢>2+T .
— T COS — —
T 2 4 907

1
Er = Zng <4cos§ <7’+TCOS§) +T> —T.
The Vainberg-Tonti Lagrangian (2.8) associated with J?.*¢|y is of second order, and it can
be reduced to the first-order Lagrangian, which coincides with JY*\ = (Lgi, o Jt)dt on

J' (R x M,,), where

1 . .2 ©\2 T .2
Liin o J (o, 7,,7) = S\ <'r’ + 7 cos §> )9 (5.3)
Using the chart transformations (4.1), (4.2), it is also easy to verify that formula (5.3) defines

a global function on J' (R x M,,).

5.2 The Vainberg-Tonti Lagrangian need not be global

We give another simple example of a globally defined source form € on J* (R x M,.,), which
is locally hence also globally variational. But contrary to the previous example, it shows that
the direct use of the Vainberg—Tonti construction does not lead to the global Lagrangian.

Let € be a source form defined on J' (R x M, ,) such that

elv =en? Adt +e,n” Ndt, ely =emm? ANdl+e:n7 AdL,

where ¢, = 1 = €5, 6, = 0 = &7, and 0¥ = dp — ¢dt, 1" = dr — 7dt, n° = dp — pdt,
n" = d7 —7dt. Clearly, ¢ is locally variational (cf. Theorem 3). The Vainberg-Tonti Lagrangian
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(2.8) associated with &|y, resp. e|y, reads L = ¢, ¢ € (—m,7), resp. L = @, ¢ € (0,27).
These local Lagrange functions, however, do not define a global Lagrange function for given ¢.
Nevertheless, ¢ is globally variational, and it possesses a global Lagrange function, defined by

o+ 7 (14 cosp) —mtosing, e (0,7),
¥ + 27T7 pE (—77',0],

«Z(t,so,@:{

and

@7 QB S [71'7 27T)
Clearly, Z oV o U= ZonVNV.

. ¢ +m (14 cosp) — mtpsing, € (0,7),
f(t,so,w)z{
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(GLOBALNE VARIACNI FORMY NA MOBIOVE PASCE:
PRIKLADY

Abstrakt: S vyuzitim Vainberg—Tontiho konstrukce jsou studovany piiklady globalné vari-
acnich zdrojovych forem (diferencidlnich rovnic) na oteviené Mobiové pasce. Podkladova vari-
eta byla zvolena s ohledem na teorii variacni posloupnosti, ktera zarucuje globalni varia¢nost
na topologickych prostorech s trivialni druhou de Rhamovou kohomologickou grupou.

Klic¢ova slova: Mobiova paska, Helmholtzovy podminky, Vainberg—Tonti lagrangian,variac¢ni
posloupnost, globalni varia¢nost.
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